Argument (complex analysis)In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in Figure 1. It is a multivalued function operating on the nonzero complex numbers. To define a single-valued function, the principal value of the argument (sometimes denoted Arg z) is used. It is often chosen to be the unique value of the argument that lies within the interval .
Multivalued functionIn mathematics, a multivalued function, also called multifunction and many-valued function, is a set-valued function with continuity properties that allow considering it locally as an ordinary function. Multivalued functions arise commonly in applications of the implicit function theorem, since this theorem can be viewed as asserting the existence of a multivalued function. In particular, the inverse function of a differentiable function is a multivalued function, and is single-valued only when the original function is monotonic.
Inverse hyperbolic functionsIn mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant, inverse hyperbolic secant, and inverse hyperbolic cotangent. They are commonly denoted by the symbols for the hyperbolic functions, prefixed with arc- or ar-.
Atan2In computing and mathematics, the function atan2 is the 2-argument arctangent. By definition, is the angle measure (in radians, with ) between the positive -axis and the ray from the origin to the point in the Cartesian plane. Equivalently, is the argument (also called phase or angle) of the complex number The function first appeared in the programming language Fortran in 1961. It was originally intended to return a correct and unambiguous value for the angle θ in converting from Cartesian coordinates (x, y) to polar coordinates (r, θ).
Principal valueIn mathematics, specifically complex analysis, the principal values of a multivalued function are the values along one chosen branch of that function, so that it is single-valued. A simple case arises in taking the square root of a positive real number. For example, 4 has two square roots: 2 and −2; of these the positive root, 2, is considered the principal root and is denoted as Consider the complex logarithm function log z. It is defined as the complex number w such that Now, for example, say we wish to find log i.
Branch pointIn the mathematical field of complex analysis, a branch point of a multi-valued function (usually referred to as a "multifunction" in the context of complex analysis) is a point such that if the function is n-valued (has n values) at that point, all of its neighborhoods contain a point that has more than n values. Multi-valued functions are rigorously studied using Riemann surfaces, and the formal definition of branch points employs this concept.
Principal branchIn mathematics, a principal branch is a function which selects one branch ("slice") of a multi-valued function. Most often, this applies to functions defined on the complex plane. Principal branches are used in the definition of many inverse trigonometric functions, such as the selection either to define that or that A more familiar principal branch function, limited to real numbers, is that of a positive real number raised to the power of 1/2. For example, take the relation y = x1/2, where x is any positive real number.
Line integralIn mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane. The function to be integrated may be a scalar field or a vector field. The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the scalar product of the vector field with a differential vector in the curve).
BiholomorphismIn the mathematical theory of functions of one or more complex variables, and also in complex algebraic geometry, a biholomorphism or biholomorphic function is a bijective holomorphic function whose inverse is also holomorphic. Formally, a biholomorphic function is a function defined on an open subset U of the -dimensional complex space Cn with values in Cn which is holomorphic and one-to-one, such that its is an open set in Cn and the inverse is also holomorphic. More generally, U and V can be complex manifolds.
Holomorphic functionIn mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis.