In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis.
Though the term analytic function is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis.
Holomorphic functions are also sometimes referred to as regular functions. A holomorphic function whose domain is the whole complex plane is called an entire function. The phrase "holomorphic at a point z0" means not just differentiable at z0, but differentiable everywhere within some neighbourhood of z0 in the complex plane.
Given a complex-valued function f of a single complex variable, the derivative of f at a point z0 in its domain is defined as the limit
This is the same definition as for the derivative of a real function, except that all quantities are complex. In particular, the limit is taken as the complex number z tends to z0, and this means that the same value is obtained for any sequence of complex values for z that tends to z0. If the limit exists, f is said to be complex differentiable at z0. This concept of complex differentiability shares several properties with real differentiability: it is linear and obeys the product rule, quotient rule, and chain rule.
A function is holomorphic on an open set U if it is complex differentiable at every point of U. A function f is holomorphic at a point z0 if it is holomorphic on some neighbourhood of z0.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
En son coeur, c'est un cours d'analyse fonctionnelle pour les physiciens et traite les bases de théorie de mesure, des espaces des fonctions et opérateurs linéaires.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the x-axis, called the real axis, is formed by the real numbers, and the y-axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows a geometric interpretation of complex numbers. Under addition, they add like vectors.
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about converges to the function in some neighborhood for every in its domain.
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.
Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...