In abstract algebra, a nonzero ring R is a prime ring if for any two elements a and b of R, arb = 0 for all r in R implies that either a = 0 or b = 0. This definition can be regarded as a simultaneous generalization of both integral domains and simple rings.
Although this article discusses the above definition, prime ring may also refer to the minimal non-zero subring of a field, which is generated by its identity element 1, and determined by its characteristic. For a characteristic 0 field, the prime ring is the integers, and for a characteristic p field (with p a prime number) the prime ring is the finite field of order p (cf. Prime field).
A ring R is prime if and only if the zero ideal {0} is a prime ideal in the noncommutative sense.
This being the case, the equivalent conditions for prime ideals yield the following equivalent conditions for R to be a prime ring:
For any two ideals A and B of R, AB = {0} implies A = {0} or B = {0}.
For any two right ideals A and B of R, AB = {0} implies A = {0} or B = {0}.
For any two left ideals A and B of R, AB = {0} implies A = {0} or B = {0}.
Using these conditions it can be checked that the following are equivalent to R being a prime ring:
All nonzero right ideals are faithful as right R-modules.
All nonzero left ideals are faithful as left R-modules.
Any domain is a prime ring.
Any simple ring is a prime ring, and more generally: every left or right primitive ring is a prime ring.
Any matrix ring over an integral domain is a prime ring. In particular, the ring of 2 × 2 integer matrices is a prime ring.
A commutative ring is a prime ring if and only if it is an integral domain.
A ring is prime if and only if its zero ideal is a prime ideal.
A nonzero ring is prime if and only if the monoid of its ideals lacks zero divisors.
The ring of matrices over a prime ring is again a prime ring.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like R, S are Morita equivalent (denoted by ) if their are equivalent (denoted by ). It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958. Rings are commonly studied in terms of their modules, as modules can be viewed as representations of rings.
In abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
obtain algorithmically effective versions of the dense lattice sphere packings constructed from orders in Q-division rings by the first author. The lattices in question are lifts of suitable codes from prime characteristic to orders O in Q-division rings a ...