Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Noise is an intrinsic part of any sensor and is present, in various degrees, in any content that has been captured in real life environments. In imaging applications, several pre- and post-processing solutions have been proposed to cope with noise in captu ...
When learning from data, leveraging the symmetries of the domain the data lies on is a principled way to combat the curse of dimensionality: it constrains the set of functions to learn from. It is more data efficient than augmentation and gives a generaliz ...
A simple model to study subspace clustering is the high-dimensional k -Gaussian mixture model where the cluster means are sparse vectors. Here we provide an exact asymptotic characterization of the statistically optimal reconstruction error in this model i ...
We develop a novel 2D functional learning framework that employs a sparsity-promoting regularization based on second-order derivatives. Motivated by the nature of the regularizer, we restrict the search space to the span of piecewise-linear box splines shi ...
The use of point clouds to digitally represent three-dimensional objects with both geometry and color attributes is rapidly increasing in several applications. Since storage and transmission of uncompressed point cloud data are often impractical, several l ...
We present a discriminative clustering approach in which the feature representation can be learned from data and moreover leverage labeled data. Representation learning can give a similarity-based clustering method the ability to automatically adapt to an ...
A well-known, previously only 1D, algorithm using the Sparse Representation of Signals and an iterative Block Coordinate Descent method (the SparSpec-1D algorithm) has been further developed and tested in a 2D spatial domain to obtain the toroidal and polo ...
Countless signal processing applications include the reconstruction of signals from few indirect linear measurements. The design of effective measurement operators is typically constrained by the underlying hardware and physics, posing a challenging and of ...
Training convolutional neural networks (CNNs) for very high-resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor-intensive and time-consuming to produce. Moreover, professional photograph interpreter ...
Dynamical Systems (DS) are fundamental to the modeling and understanding time evolving phenomena, and have application in physics, biology and control. As determining an analytical description of the dynamics is often difficult, data-driven approaches are ...