Publication

On combining denoising with learning-based image decoding

Touradj Ebrahimi, Michela Testolina
2022
Conference paper
Abstract

Noise is an intrinsic part of any sensor and is present, in various degrees, in any content that has been captured in real life environments. In imaging applications, several pre- and post-processing solutions have been proposed to cope with noise in captured images. More recently, learning-based solutions have shown impressive results in image enhancement in general, and in image denoising in particular. In this paper, we review multiple novel solutions for image denoising in the compressed domain, by integrating denoising operations into the decoder of a learning-based compression method. The paper starts by explaining the advantages of such an approach from different points of view. We then describe the proposed solutions, including both blind and non-blind methods, comparing them to state of the art methods. Finally, conclusions are drawn from the obtained results, summarizing the advantages and drawbacks of each method.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.