**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Discrete choice

Summary

In economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis. On the other hand, discrete choice analysis examines situations in which the potential outcomes are discrete, such that the optimum is not characterized by standard first-order conditions. Thus, instead of examining "how much" as in problems with continuous choice variables, discrete choice analysis examines "which one". However, discrete choice analysis can also be used to examine the chosen quantity when only a few distinct quantities must be chosen from, such as the number of vehicles a household chooses to own and the number of minutes of telecommunications service a customer decides to purchase. Techniques such as logistic regression and probit regression can be used for empirical analysis of discrete choice.
Discrete choice models theoretically or empirically model choices made by people among a finite set of alternatives. The models have been used to examine, e.g., the choice of which car to buy, where to go to college, which mode of transport (car, bus, rail) to take to work among numerous other applications. Discrete choice models are also used to examine choices by organizations, such as firms or government agencies. In the discussion below, the decision-making unit is assumed to be a person, though the concepts are applicable more generally. Daniel McFadden won the Nobel prize in 2000 for his pioneering work in developing the theoretical basis for discrete choice.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (4)

Related units (1)

Related concepts (9)

Related courses (7)

Related MOOCs (4)

MATH-463: Mathematical modelling of behavior

Discrete choice models allow for the analysis and prediction of individuals' choice behavior. The objective of the course is to introduce both methodological and applied aspects, in the field of marke

FIN-403: Econometrics

The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.

ME-390: Foundations of artificial intelligence

This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica

Multinomial logistic regression

In statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).

Discrete choice

In economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis.

Generalized extreme value distribution

In probability theory and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables.

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

Introduction to Discrete Choice Models

The course introduces the theoretical foundations to choice modeling and describes the steps of operational modeling.

Related lectures (88)

Red bus/Blue bus paradox

Explores the Red bus/Blue bus paradox, nested logit models, and multivariate extreme value models in transportation.

Derivation of the logit modelMOOC: Introduction to Discrete Choice Models

Explains the derivation of the logit model in choice models, covering error terms, choice sets, and availability conditions.

Choice Models: Logit Model Derivation

Covers the derivation of the logit model for choice with multiple alternatives and the challenges in generating choice sets.

Emre Telatar, Yunus Inan, Reka Inovan

We propose a simple model to study the tradeoff between timeliness and distortion, where different pieces of data have a different cost of not being sent. We pose the question of finding the optimal tradeoff as a policy design problem amenable to dynamic programming methods. We study the structural properties of optimal transmission policies, give an algorithmic procedure to find the optimal tradeoff, and numerically evaluate some instances.

Alexandre Massoud Alahi, Parth Ashit Kothari

Human trajectory forecasting in crowds, at its core, is a sequence prediction problem with specific challenges of capturing inter-sequence dependencies (social interactions) and consequently predicting socially-compliant multimodal distributions. In recent years, neural network-based methods have been shown to outperform hand-crafted methods on distance-based metrics. However, these data-driven methods still suffer from one crucial limitation: lack of interpretability. To overcome this limitation, we leverage the power of discrete choice models to learn interpretable rule-based intents, and subsequently utilise the expressibility of neural networks to model scene-specific residual. Extensive experimentation on the interaction-centric benchmark TrajNet++ demonstrates the effectiveness of our proposed architecture to explain its predictions without compromising the accuracy.

2021Emre Telatar, Yunus Inan, Reka Inovan

We propose a simple model to study the tradeoff between timeliness and distortion, where different pieces of data have a different cost of not being sent. We pose the question of finding the optimal tradeoff as a policy design problem amenable to dynamic programming methods. We study the structural properties of optimal transmission policies, give an algorithmic procedure to find the optimal tradeoff, and numerically evaluate some instances.

2021