Sulfur assimilation is the process by which living organisms incorporate sulfur into their biological molecules. In plants, sulfate is absorbed by the roots and then be transported to the chloroplasts by the transipration stream where the sulfur are reduced to sulfide with the help of a series of enzymatic reactions. Furthermore, the reduced sulfur is incorporated into cysteine, an amino acid that is a precursor to many other sulfur-containing compounds. In animals, sulfur assimilation occurs primarily through the diet, as animals cannot produce sulfur-containing compounds directly. Sulfur is incorporated into amino acids such as cysteine and methionine, which are used to build proteins and other important molecules. Besides, With the rapid development of economy, the increase emission of sulfur results in environmental issues, such as acid rain and hydrogen sulfilde.
Sulfate is taken up by the roots that have high affinity. The maximal sulfate uptake rate is generally already reached at sulfate levels of 0.1 mM and lower. The uptake of sulfate by the roots and its transport to the shoot is strictly controlled and it appears to be one of the primary regulatory sites of sulfur assimilation.
Sulfate is actively taken up across the plasma membrane of the root cells, subsequently loaded into the xylem vessels and transported to the shoot by the transpiration stream. The uptake and transport of sulfate is energy dependent (driven by a proton gradient generated by ATPases) through a proton/sulfate co-transport. In the shoot the sulfate is unloaded and transported to the chloroplasts where it is reduced. The remaining sulfate in plant tissue is predominantly present in the vacuole, since the concentration of sulfate in the cytoplasm is kept rather constant.
Distinct sulfate transporter proteins mediate the uptake, transport and subcellular distribution of sulfate. According to their cellular and subcellular gene expression, and possible functioning the sulfate transporters gene family has been classified in up to 5 different groups.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
The sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (CHNOPS), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. The global sulfur cycle involves the transformations of sulfur species through different oxidation states, which play an important role in both geological and biological processes.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Background Gypsum Hill Spring, located in Nunavut in the Canadian High Arctic, is a rare example of a cold saline spring arising through thick permafrost. It perennially discharges cold (similar to 7 degrees C), hypersaline (7-8% salinity), anoxic (similar ...
BMC2023
The mechanisms of external sulfate attack on cement mortars containing nano silica have been studied under full immersion conditions after 3 years. The sulfate degradation processes were compared between sodium sulfate and magnesium sulfate solutions with ...
Microbial life is widespread in the terrestrial subsurface and present down to several kilometers depth, but the energy sources that fuel metabolism in deep oligotrophic and anoxic environments remain unclear. In the deep crystalline bedrock of the Fennosc ...