In topology, Urysohn's lemma is a lemma that states that a topological space is normal if and only if any two disjoint closed subsets can be separated by a continuous function.
Urysohn's lemma is commonly used to construct continuous functions with various properties on normal spaces. It is widely applicable since all metric spaces and all compact Hausdorff spaces are normal. The lemma is generalised by (and usually used in the proof of) the Tietze extension theorem.
The lemma is named after the mathematician Pavel Samuilovich Urysohn.
Two subsets and of a topological space are said to be separated by neighbourhoods if there are neighbourhoods of and of that are disjoint. In particular and are necessarily disjoint.
Two plain subsets and are said to be separated by a continuous function if there exists a continuous function from into the unit interval such that for all and for all Any such function is called a Urysohn function for and In particular and are necessarily disjoint.
It follows that if two subsets and are separated by a function then so are their closures. Also it follows that if two subsets and are separated by a function then and are separated by neighbourhoods.
A normal space is a topological space in which any two disjoint closed sets can be separated by neighbourhoods. Urysohn's lemma states that a topological space is normal if and only if any two disjoint closed sets can be separated by a continuous function.
The sets and need not be precisely separated by , i.e., it is not necessary and guaranteed that and for outside and A topological space in which every two disjoint closed subsets and are precisely separated by a continuous function is perfectly normal.
Urysohn's lemma has led to the formulation of other topological properties such as the 'Tychonoff property' and 'completely Hausdorff spaces'. For example, a corollary of the lemma is that normal T1 spaces are Tychonoff.
A topological space is normal if and only if, for any two non-empty closed disjoint subsets and of there exists a continuous map such that and
The proof proceeds by repeatedly applying the following alternate characterization of normality.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In topology and related fields of mathematics, there are several restrictions that one often makes on the kinds of topological spaces that one wishes to consider. Some of these restrictions are given by the separation axioms. These are sometimes called Tychonoff separation axioms, after Andrey Tychonoff. The separation axioms are not fundamental axioms like those of set theory, but rather defining properties which may be specified to distinguish certain types of topological spaces.
In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets are separated or not is important both to the notion of connected spaces (and their connected components) as well as to the separation axioms for topological spaces. Separated sets should not be confused with separated spaces (defined below), which are somewhat related but different.
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
Faithful expression of Hox genes in both time and space is essential for proper patterning of the primary body axis. Transgenic approaches in vertebrates have suggested that this collinear activation process is regulated in a largely gene cluster-autonomou ...