Summary
In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted I (capital letter ). In addition to its role in real analysis, the unit interval is used to study homotopy theory in the field of topology. In the literature, the term "unit interval" is sometimes applied to the other shapes that an interval from 0 to 1 could take: , , and . However, the notation I is most commonly reserved for the closed interval . The unit interval is a complete metric space, homeomorphic to the extended real number line. As a topological space, it is compact, contractible, path connected and locally path connected. The Hilbert cube is obtained by taking a topological product of countably many copies of the unit interval. In mathematical analysis, the unit interval is a one-dimensional analytical manifold whose boundary consists of the two points 0 and 1. Its standard orientation goes from 0 to 1. The unit interval is a totally ordered set and a complete lattice (every subset of the unit interval has a supremum and an infimum). Cardinality of the continuum The size or cardinality of a set is the number of elements it contains. The unit interval is a subset of the real numbers . However, it has the same size as the whole set: the cardinality of the continuum. Since the real numbers can be used to represent points along an infinitely long line, this implies that a line segment of length 1, which is a part of that line, has the same number of points as the whole line. Moreover, it has the same number of points as a square of area 1, as a cube of volume 1, and even as an unbounded n-dimensional Euclidean space (see Space filling curve). The number of elements (either real numbers or points) in all the above-mentioned sets is uncountable, as it is strictly greater than the number of natural numbers. The interval , with length two, demarcated by the positive and negative units, occurs frequently, such as in the range of the trigonometric functions sine and cosine and the hyperbolic function tanh.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.