In mathematics, an alternating series is an infinite series of the form
or
with an > 0 for all n. The signs of the general terms alternate between positive and negative. Like any series, an alternating series converges if and only if the associated sequence of partial sums converges.
The geometric series 1/2 − 1/4 + 1/8 − 1/16 + ⋯ sums to 1/3.
The alternating harmonic series has a finite sum but the harmonic series does not.
The Mercator series provides an analytic expression of the natural logarithm:
The functions sine and cosine used in trigonometry can be defined as alternating series in calculus even though they are introduced in elementary algebra as the ratio of sides of a right triangle. In fact,
and
When the alternating factor (–1)n is removed from these series one obtains the hyperbolic functions sinh and cosh used in calculus.
For integer or positive index α the Bessel function of the first kind may be defined with the alternating series
where Γ(z) is the gamma function.
If s is a complex number, the Dirichlet eta function is formed as an alternating series
that is used in analytic number theory.
Alternating series test
The theorem known as "Leibniz Test" or the alternating series test tells us that an alternating series will converge if the terms an converge to 0 monotonically.
Proof: Suppose the sequence converges to zero and is monotone decreasing. If is odd and , we obtain the estimate via the following calculation:
Since is monotonically decreasing, the terms are negative. Thus, we have the final inequality: . Similarly, it can be shown that . Since converges to , our partial sums form a Cauchy sequence (i.e., the series satisfies the Cauchy criterion) and therefore converge. The argument for even is similar.
The estimate above does not depend on . So, if is approaching 0 monotonically, the estimate provides an error bound for approximating infinite sums by partial sums:
That does not mean that this estimate always finds the very first element after which error is less than the modulus of the next term in the series.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted The nth partial sum Sn is the sum of the first n terms of the sequence; that is, A series is convergent (or converges) if the sequence of its partial sums tends to a limit; that means that, when adding one after the other in the order given by the indices, one gets partial sums that become closer and closer to a given number.
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing the convergence or divergence of an infinite series or an improper integral. In both cases, the test works by comparing the given series or integral to one whose convergence properties are known.
In mathematics, more specifically in mathematical analysis, the Cauchy product is the discrete convolution of two infinite series. It is named after the French mathematician Augustin-Louis Cauchy. The Cauchy product may apply to infinite series or power series. When people apply it to finite sequences or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution). Convergence issues are discussed in the next section.
Over-the-air computation (AirComp) is a disruptive technique for fast wireless data aggregation in Internet of Things (IoT) networks via exploiting the waveform superposition property of multiple-access channels. However, the performance of AirComp is bott ...
We compute a family of scalar loop diagrams in AdS. We use the spectral representation to derive various bulk vertex/propagator identities, and these identities enable to reduce certain loop bubble diagrams to lower loop diagrams, and often to tree- level ...
To describe and simulate dynamic micromagnetic phenomena, we consider a coupled system of the non-linear Landau-Lifshitz-Gilbert equation and the conservation of momentum equation. This coupling allows one to include magnetostrictive effects into the simul ...