There are several categories of decompression equipment used to help divers decompress, which is the process required to allow divers to return to the surface safely after spending time underwater at higher ambient pressures.
Decompression obligation for a given must be calculated and monitored to ensure that the risk of decompression sickness is controlled. Some equipment is specifically for these functions, both during planning before the dive and during the dive. Other equipment is used to mark the underwater position of the diver, as a position reference in low visibility or currents, or to assist the diver's ascent and control the depth.
Decompression may be shortened ("accelerated") by breathing an oxygen-rich "decompression gas" such as a nitrox blend or pure oxygen. The high partial pressure of oxygen in such decompression mixes produces the effect known as the oxygen window. This decompression gas is often carried by scuba divers in side-slung cylinders. Cave divers who can only return by a single route, can leave decompression gas cylinders attached to the guideline ("stage" or "drop cylinders") at the points where they will be used. Surface-supplied divers will have the composition of the breathing gas controlled at the gas panel.
Divers with long decompression obligations may be decompressed inside gas filled hyperbaric chambers in the water or at the surface, and in the extreme case, saturation divers are only decompressed at the end of a project, contract, or tour of duty that may be several weeks long.
Equipment for planning and monitoring decompression includes decompression tables, depth gauges, timers, surface computer software, and personal decompression computers. There is a wide range of choice.
A decompression algorithm is used to calculate the decompression stops needed for a particular to reduce the risk of decompression sickness occurring after surfacing at the end of a dive. The algorithm can be used to generate decompression schedules for a particular dive profile, decompression tables for more general use, or be implemented in dive computer software.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides the stepping stone to becoming an advanced A/MS IC designer. It emphasizes conceptual learning spanning from implementation to structure/architecture. It expands basic concepts (e
The practice of decompression by divers comprises the planning and monitoring of the profile indicated by the algorithms or tables of the chosen decompression model, to allow asymptomatic and harmless release of excess inert gases dissolved in the tissues as a result of breathing at ambient pressures greater than surface atmospheric pressure, the equipment available and appropriate to the circumstances of the dive, and the procedures authorized for the equipment and profile to be used.
The Bühlmann decompression set of parameters is an Haldanian mathematical model (algorithm) of the way in which inert gases enter and leave the human body as the ambient pressure changes. Versions are used to create Bühlmann decompression tables and in personal dive computers to compute no-decompression limits and decompression schedules for dives in real-time. These decompression tables allow divers to plan the depth and duration for dives and the required decompression stops.
The decompression of a diver is the reduction in ambient pressure experienced during ascent from depth. It is also the process of elimination of dissolved inert gases from the diver's body which accumulate during ascent, largely during pauses in the ascent known as decompression stops, and after surfacing, until the gas concentrations reach equilibrium. Divers breathing gas at ambient pressure need to ascend at a rate determined by their exposure to pressure and the breathing gas in use.
Driven by the demand for real-time processing and the need to minimize latency in AI algorithms, edge computing has experienced remarkable progress. Decision-making AI applications stand out for their heavy reliance on data-centric operations, predominantl ...
We present a numerical model for the simulation of 3D mono-dispersed sediment dynamics in a Newtonian flow with free surfaces. The physical model is a macroscopic model for the transport of sediment based on a sediment concentration with a single momentum ...
A spring mass model is often used to describe human running, allowing to understand the concept of elastic energy storage and restitution. The stiffness of the spring is a key parameter and different methods have been developed to estimate both the vertica ...