Summary
In quantum mechanics, the Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL equation, named after Vittorio Gorini, Andrzej Kossakowski, George Sudarshan and Göran Lindblad), master equation in Lindblad form, quantum Liouvillian, or Lindbladian is one of the general forms of Markovian master equations describing open quantum systems. It generalizes the Schrödinger equation to open quantum systems; that is, systems in contacts with their surroundings. The resulting dynamics is no longer unitary, but still satisfies the property of being trace-preserving and completely positive for any initial condition. The Schrödinger equation or, actually, the von Neumann equation, is a special case of the GKSL equation, which has led to some speculation that quantum mechanics may be productively extended and expanded through further application and analysis of the Lindblad equation. The Schrödinger equation deals with state vectors, which can only describe pure quantum states and are thus less general than density matrices, which can describe mixed states as well. In the canonical formulation of quantum mechanics, a system's time evolution is governed by unitary dynamics. This implies that there is no decay and phase coherence is maintained throughout the process, and is a consequence of the fact that all participating degrees of freedom are considered. However, any real physical system is not absolutely isolated, and will interact with its environment. This interaction with degrees of freedom external to the system results in dissipation of energy into the surroundings, causing decay and randomization of phase. More so, understanding the interaction of a quantum system with its environment is necessary for understanding many commonly observed phenomena like the spontaneous emission of light from excited atoms, or the performance of many quantum technological devices, like the laser. Certain mathematical techniques have been introduced to treat the interaction of a quantum system with its environment.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (33)