In quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment. In the context of quantum computation, a quantum operation is called a quantum channel.
Note that some authors use the term "quantum operation" to refer specifically to completely positive (CP) and non-trace-increasing maps on the space of density matrices, and the term "quantum channel" to refer to the subset of those that are strictly trace-preserving.
Quantum operations are formulated in terms of the density operator description of a quantum mechanical system. Rigorously, a quantum operation is a linear, completely positive map from the set of density operators into itself. In the context of quantum information, one often imposes the further restriction that a quantum operation must be physical, that is, satisfy for any state .
Some quantum processes cannot be captured within the quantum operation formalism; in principle, the density matrix of a quantum system can undergo completely arbitrary time evolution. Quantum operations are generalized by quantum instruments, which capture the classical information obtained during measurements, in addition to the quantum information.
The Schrödinger picture provides a satisfactory account of time evolution of state for a quantum mechanical system under certain assumptions. These assumptions include
The system is non-relativistic
The system is isolated.
The Schrödinger picture for time evolution has several mathematically equivalent formulations. One such formulation expresses the time rate of change of the state via the Schrödinger equation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
After recapping the basics of quantum theory from an information
theoretic perspective, we will cover more advanced topics in
quantum information theory. This includes introducing measures of quantum
In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet. More formally, quantum channels are completely positive (CP) trace-preserving maps between spaces of operators. In other words, a quantum channel is just a quantum operation viewed not merely as the reduced dynamics of a system but as a pipeline intended to carry quantum information.
In quantum mechanics, the Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL equation, named after Vittorio Gorini, Andrzej Kossakowski, George Sudarshan and Göran Lindblad), master equation in Lindblad form, quantum Liouvillian, or Lindbladian is one of the general forms of Markovian master equations describing open quantum systems. It generalizes the Schrödinger equation to open quantum systems; that is, systems in contacts with their surroundings.
In the mathematical study of logic and the physical analysis of quantum foundations, quantum logic is a set of rules for manipulation of propositions inspired by the structure of quantum theory. The formal system takes as its starting point an observation of Garrett Birkhoff and John von Neumann, that the structure of experimental tests in classical mechanics forms a Boolean algebra, but the structure of experimental tests in quantum mechanics forms a much more complicated structure.
The magnetic propertiesof transition-metal ions aregenerallydescribed by the atomic spins of the ions and their exchange coupling.The orbital moment, usually largely quenched due the ligand field,is then seen as a perturbation. In such a scheme, S = 1/2 io ...
Quantum computing not only holds the potential to solve long-standing problems in quantum physics, but also to offer speed-ups across a broad spectrum of other fields. Access to a computational space that incorporates quantum effects, such as superposition ...
EPFL2024
, ,
Quantum state reconstruction using Neural Quantum States has been proposed as a viable tool to reduce quantum shot complexity in practical applications, and its advantage over competing techniques has been shown in numerical experiments focusing mainly on ...
Verein Forderung Open Access Publizierens Quantenwissenschaf2024