In mathematics, a moment matrix is a special symmetric square matrix whose rows and columns are indexed by monomials. The entries of the matrix depend on the product of the indexing monomials only (cf. Hankel matrices.)
Moment matrices play an important role in polynomial fitting, polynomial optimization (since positive semidefinite moment matrices correspond to polynomials which are sums of squares) and econometrics.
A multiple linear regression model can be written as
where is the explained variable, are the explanatory variables, is the error, and are unknown coefficients to be estimated. Given observations , we have a system of linear equations that can be expressed in matrix notation.
or
where and are each a vector of dimension , is the design matrix of order , and is a vector of dimension . Under the Gauss–Markov assumptions, the best linear unbiased estimator of is the linear least squares estimator , involving the two moment matrices and defined as
and
where is a square normal matrix of dimension , and is a vector of dimension .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores link prediction in networks, covering missing edges, probabilistic methods, and causal inference challenges.
In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.
We have shown that several interesting problems in H/sup /spl infin//-filtering, quadratic game theory, and risk sensitive control and estimation follow as special cases of the Krein-space linear estimation theory developed in Part I. We show that all thes ...
Institute of Electrical and Electronics Engineers1996