Concept

Moment matrix

Résumé
In mathematics, a moment matrix is a special symmetric square matrix whose rows and columns are indexed by monomials. The entries of the matrix depend on the product of the indexing monomials only (cf. Hankel matrices.) Moment matrices play an important role in polynomial fitting, polynomial optimization (since positive semidefinite moment matrices correspond to polynomials which are sums of squares) and econometrics. A multiple linear regression model can be written as where is the explained variable, are the explanatory variables, is the error, and are unknown coefficients to be estimated. Given observations , we have a system of linear equations that can be expressed in matrix notation. or where and are each a vector of dimension , is the design matrix of order , and is a vector of dimension . Under the Gauss–Markov assumptions, the best linear unbiased estimator of is the linear least squares estimator , involving the two moment matrices and defined as and where is a square normal matrix of dimension , and is a vector of dimension .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.