Concept

FtsZ

Summary
FtsZ is a protein encoded by the ftsZ gene that assembles into a ring at the future site of bacterial cell division (also called the Z ring). FtsZ is a prokaryotic homologue of the eukaryotic protein tubulin. The initials FtsZ mean "Filamenting temperature-sensitive mutant Z." The hypothesis was that cell division mutants of E. coli would grow as filaments due to the inability of the daughter cells to separate from one another. FtsZ is found in almost all bacteria, many archaea, all chloroplasts and some mitochondria, where it is essential for cell division. FtsZ assembles the cytoskeletal scaffold of the Z ring that, along with additional proteins, constricts to divide the cell in two. In the 1960s scientists screened for temperature sensitive mutations that blocked cell division at 42 °C. The mutant cells divided normally at 30°, but failed to divide at 42°. Continued growth without division produced long filamentous cells (Filamenting temperature sensitive). Several such mutants were discovered and mapped to a locus originally named ftsA, which could be one or more genes. In 1980 Lutkenhaus and Donachie showed that several of these mutations mapped to one gene, ftsA, but one well-characterized mutant, PAT84, originally discovered by Hirota et al, mapped to a separate, adjacent gene. They named this cell division gene ftsZ. In 1991 Bi and Lutkenhaus used immunogold electron microscopy to show that FtsZ localized to the invaginating septum at midcell. Subsequently, the Losick and Margolin groups used immuno-fluorescence microscopy and GFP fusions to show that FtsZ assembled Z rings early in the cell cycle, well before the septum began to constrict. Other division proteins then assemble onto the Z ring and constriction occurs in the last part of the cell cycle. In 1992-3 three labs independently discovered that FtsZ was related to eukaryotic tubulin, which is the protein subunit that assembles into microtubules. This was the first discovery that bacteria have homologs of eukaryotic cytoskeletal proteins.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (12)
Fission (biology)
Fission, in biology, is the division of a single entity into two or more parts and the regeneration of those parts to separate entities resembling the original. The object experiencing fission is usually a cell, but the term may also refer to how organisms, bodies, populations, or species split into discrete parts. The fission may be binary fission, in which a single organism produces two parts, or multiple fission, in which a single entity produces multiple parts. Organisms in the domains of Archaea and Bacteria reproduce with binary fission.
Motor protein
Motor proteins are a class of molecular motors that can move along the cytoplasm of cells. They convert chemical energy into mechanical work by the hydrolysis of ATP. Flagellar rotation, however, is powered by a proton pump. Motor proteins are the driving force behind most active transport of proteins and vesicles in the cytoplasm. Kinesins and cytoplasmic dyneins play essential roles in intracellular transport such as axonal transport and in the formation of the spindle apparatus and the separation of the chromosomes during mitosis and meiosis.
Tubulin
Tubulin in molecular biology can refer either to the tubulin protein superfamily of globular proteins, or one of the member proteins of that superfamily. α- and β-tubulins polymerize into microtubules, a major component of the eukaryotic cytoskeleton. Microtubules function in many essential cellular processes, including mitosis. Tubulin-binding drugs kill cancerous cells by inhibiting microtubule dynamics, which are required for DNA segregation and therefore cell division.
Show more