Data re-identification or de-anonymization is the practice of matching anonymous data (also known as de-identified data) with publicly available information, or auxiliary data, in order to discover the person the data belong to. This is a concern because companies with privacy policies, health care providers, and financial institutions may release the data they collect after the data has gone through the de-identification process.
The de-identification process involves masking, generalizing or deleting both direct and indirect identifiers; the definition of this process is not universal. Information in the public domain, even seemingly anonymized, may thus be re-identified in combination with other pieces of available data and basic computer science techniques. The Protection of Human Subjects ('Common Rule#Signatories'), a collection of multiple U.S. federal agencies and departments including the U.S. Department of Health and Human Services, speculate that re-identification is becoming gradually easier because of "big data"—the abundance and constant collection and analysis of information along the evolution of technologies and the advances of algorithms. However, others have claimed that de-identification is a safe and effective data liberation tool and do not view re-identification as a concern.
More and more data are becoming publicly available over the Internet. These data are released after applying some anonymization techniques like removing personally identifiable information (PII) such as names, addresses and social security numbers to ensure the sources' privacy. This assurance of privacy allows the government to legally share limited data sets with third parties without requiring written permission. Such data has proved to be very valuable for researchers, particularly in health care.
The risk of re-identification is significantly reduced with GDPR-compliant pseudonymization which requires that data cannot be attributed to a specific data subject without the use of separately kept "additional information".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to prect privacy, and how to evalu
Personal data, also known as personal information or personally identifiable information (PII), is any information related to an identifiable person. The abbreviation PII is widely accepted in the United States, but the phrase it abbreviates has four common variants based on personal or personally, and identifiable or identifying. Not all are equivalent, and for legal purposes the effective definitions vary depending on the jurisdiction and the purposes for which the term is being used.
Privacy (UK, US) is the ability of an individual or group to seclude themselves or information about themselves, and thereby express themselves selectively. The domain of privacy partially overlaps with security, which can include the concepts of appropriate use and protection of information. Privacy may also take the form of bodily integrity. There have been many different conceptions of privacy throughout history. Most cultures recognize the right of an individual to withhold aspects of their personal lives from public record.
Explores challenges in privacy-preserving data publishing, including failed de-identification examples and privacy threats, and presents a case study on Airbnb's efforts to address racist practices while protecting user privacy.
With the rise of open data, identifiability of individuals based on 3D renderings obtained from routine structural magnetic resonance imaging (MRI) scans of the head has become a growing privacy concern. To protect subject privacy, several algorithms have ...
Wiley2024
, , ,
Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as ...
Dordrecht2024
, , , ,
The advancement of face recognition technology has delivered substantial societal advantages. However, it has also raised global privacy concerns due to the ubiquitous collection and potential misuse of individuals' facial data. This presents a notable par ...