Related courses (31)
MGT-484: Applied probability & stochastic processes
This course focuses on dynamic models of random phenomena, and in particular, the most popular classes of such models: Markov chains and Markov decision processes. We will also study applications in q
MATH-233: Probability and statistics
Le cours fournit une initiation à la théorie des probabilités et aux méthodes statistiques pour physiciens.
BIO-369: Randomness and information in biological data
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
COM-417: Advanced probability and applications
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
COM-102: Advanced information, computation, communication II
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
MATH-562: Statistical inference
Inference from the particular to the general based on probability models is central to the statistical method. This course gives a graduate-level account of the main ideas of statistical inference.
MSE-213: Probability and statistics for materials science
The course establishes the concepts of statistical analysis, probability theory, and data analysis. This includes standard statistical tests, correlation analysis and experimental design. It introduce
MGT-492: Data science and machine learning I
This class provides a hands-on introduction to data science and machine learning topics, exploring areas such as data acquisition and cleaning, regression, classification, clustering, neural networks,
MATH-425: Spatial statistics
In this course we will focus on stochastic approaches for modelling phenomena taking place in multivariate spaces. Our main focus will be on random field models and on statistical methods for model-ba

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.