MGT-484: Applied probability & stochastic processes
Summary
This course focuses on dynamic models of random phenomena, and in particular, the most popular classes of such models: Markov chains and Markov decision processes. We will also study applications in queuing theory, finance, project management, etc.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Magna do pariatur cupidatat adipisicing officia elit cupidatat amet. Consequat aliquip et cillum et proident. Consectetur in quis laboris amet minim adipisicing. Aliqua sint qui eu fugiat magna nostrud est.
Consectetur ipsum amet ut elit mollit anim eiusmod veniam nisi commodo aliqua. Deserunt excepteur deserunt nostrud deserunt et mollit ex eu pariatur laborum deserunt ut. Dolor tempor culpa mollit sit eu ad velit. Aute exercitation ipsum esse consequat aliquip dolor laborum ut esse. Consequat sit nisi non ea qui. Proident nisi enim laboris nisi nostrud et voluptate sit ullamco ut occaecat sint consequat.
Velit velit voluptate deserunt quis eiusmod do ea fugiat dolore commodo quis et Lorem. Excepteur sunt minim enim velit do dolore sit Lorem sint amet occaecat. Voluptate incididunt sunt elit mollit incididunt tempor veniam. Aliqua id duis pariatur culpa eiusmod ut ullamco irure eu proident et. Amet cillum aliqua sit nostrud deserunt.
Voluptate dolor occaecat veniam laborum do pariatur. Dolor voluptate qui et anim magna do laborum aliquip nisi amet esse quis. Ea excepteur labore veniam non magna irure excepteur dolore irure tempor.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees