In molecular biology and biochemistry, processivity is an enzyme's ability to catalyze "consecutive reactions without releasing its substrate".
For example, processivity is the average number of nucleotides added by a polymerase enzyme, such as DNA polymerase, per association event with the template strand. Because the binding of the polymerase to the template is the rate-limiting step in DNA synthesis, the overall rate of DNA replication during S phase of the cell cycle is dependent on the processivity of the DNA polymerases performing the replication. DNA clamp proteins are integral components of the DNA replication machinery and serve to increase the processivity of their associated polymerases. Some polymerases add over 50,000 nucleotides to a growing DNA strand before dissociating from the template strand, giving a replication rate of up to 1,000 nucleotides per second.
Polymerases interact with the phosphate backbone and the minor groove of the DNA, so their interactions do not depend on the specific nucleotide sequence. The binding is largely mediated by electrostatic interactions between the DNA and the "thumb" and "palm" domains of the metaphorically hand-shaped DNA polymerase molecule. When the polymerase advances along the DNA sequence after adding a nucleotide, the interactions with the minor groove dissociate but those with the phosphate backbone remain more stable, allowing rapid re-binding to the minor groove at the next nucleotide.
Interactions with the DNA are also facilitated by DNA clamp proteins, which are multimeric proteins that completely encircle the DNA, with which they associate at replication forks. Their central pore is sufficiently large to admit the DNA strands and some surrounding water molecules, which allows the clamp to slide along the DNA without dissociating from it and without loosening the protein-protein interactions that maintain the toroid shape. When associated with a DNA clamp, DNA polymerase is dramatically more processive; without the clamp most polymerases have a processivity of only about 100 nucleotides.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes.
DNA polymerase I (or Pol I) is an enzyme that participates in the process of prokaryotic DNA replication. Discovered by Arthur Kornberg in 1956, it was the first known DNA polymerase (and the first known of any kind of polymerase). It was initially characterized in E. coli and is ubiquitous in prokaryotes. In E. coli and many other bacteria, the gene that encodes Pol I is known as polA. The E. coli Pol I enzyme is composed of 928 amino acids, and is an example of a processive enzyme — it can sequentially catalyze multiple polymerisation steps without releasing the single-stranded template.
A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones. These enzymes catalyze the chemical reaction deoxynucleoside triphosphate + DNAn pyrophosphate + DNAn+1.
In eukaryotic cells, DNA is tightly packed in the form chromatin. The basic structure of chromatin is a nucleosome composed of 147 bp DNA wrapped around eight histone proteins; two copies of H2A, H2B, H3 and H4. These histone proteins are decorated with pa ...