A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones.
These enzymes catalyze the chemical reaction
deoxynucleoside triphosphate + DNAn pyrophosphate + DNAn+1.
DNA polymerase adds nucleotides to the three prime (3')-end of a DNA strand, one nucleotide at a time. Every time a cell divides, DNA polymerases are required to duplicate the cell's DNA, so that a copy of the original DNA molecule can be passed to each daughter cell. In this way, genetic information is passed down from generation to generation.
Before replication can take place, an enzyme called helicase unwinds the DNA molecule from its tightly woven form, in the process breaking the hydrogen bonds between the nucleotide bases. This opens up or "unzips" the double-stranded DNA to give two single strands of DNA that can be used as templates for replication in the above reaction.
In 1956, Arthur Kornberg and colleagues discovered DNA polymerase I (Pol I), in Escherichia coli. They described the DNA replication process by which DNA polymerase copies the base sequence of a template DNA strand. Kornberg was later awarded the Nobel Prize in Physiology or Medicine in 1959 for this work. DNA polymerase II was discovered by Thomas Kornberg (the son of Arthur Kornberg) and Malcolm E. Gefter in 1970 while further elucidating the role of Pol I in E. coli DNA replication. Three more DNA polymerases have been found in E. coli, including DNA polymerase III (discovered in the 1970s) and DNA polymerases IV and V (discovered in 1999).
The main function of DNA polymerase is to synthesize DNA from deoxyribonucleotides, the building blocks of DNA.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
Les constituants biochimiques de l'organisme, protéines, glucides, lipides, à la lumière de l'évolution des concepts et des progrès en biologie moléculaire et génétique, sont étudiés.
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
A polymerase is an enzyme (EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using base-pairing interactions or RNA by half ladder replication. A DNA polymerase from the thermophilic bacterium, Thermus aquaticus (Taq) (PDB 1BGX, EC 2.7.7.7) is used in the polymerase chain reaction, an important technique of molecular biology.
A primer is a short single-stranded nucleic acid used by all living organisms in the initiation of DNA synthesis. DNA polymerase (responsible for DNA replication) enzymes are only capable of adding nucleotides to the 3’-end of an existing nucleic acid, requiring a primer be bound to the template before DNA polymerase can begin a complementary strand. DNA polymerase adds nucleotides after binding to the RNA primer and synthesizes the whole strand.
In biology, the word gene (from γένος, génos; meaning generation or birth or gender) can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function.
Base excision repair enzymes (BERs) detect and repair oxidative DNA damage with efficacy despite the small size of the defects and their often only minor structural impact. A charge transfer (CT) model for rapid scanning of DNA stretches has been evoked to ...
DNA replication in bacteria takes place on highly compacted chromosomes, where segregation, transcription, and repair must occur simultaneously. Within this dynamic environment, colocalization of sister replisomes has been observed in many bacterial specie ...
Bacteria are ubiquitous single cellular organisms. Compared to eukaryotic cells, bacteria have two unique characteristics: the membrane-less nucleoid and the cell wall built of peptidoglycan (PG). In most bacteria, a single circular chromosome is compacted ...