Ringing artifactsIn signal processing, particularly , ringing artifacts are artifacts that appear as spurious signals near sharp transitions in a signal. Visually, they appear as bands or "ghosts" near edges; audibly, they appear as "echos" near transients, particularly sounds from percussion instruments; most noticeable are the pre-echos. The term "ringing" is because the output signal oscillates at a fading rate around a sharp transition in the input, similar to a bell after being struck.
Quadrature mirror filterIn digital signal processing, a quadrature mirror filter is a filter whose magnitude response is the mirror image around of that of another filter. Together these filters, first introduced by Croisier et al., are known as the quadrature mirror filter pair. A filter is the quadrature mirror filter of if . The filter responses are symmetric about : In audio/voice codecs, a quadrature mirror filter pair is often used to implement a filter bank that splits an input signal into two bands.
Gibbs phenomenonIn mathematics, the Gibbs phenomenon is the oscillatory behavior of the Fourier series of a piecewise continuously differentiable periodic function around a jump discontinuity. The th partial Fourier series of the function (formed by summing the lowest constituent sinusoids of the Fourier series of the function) produces large peaks around the jump which overshoot and undershoot the function values.
Continuous waveletIn numerical analysis, continuous wavelets are functions used by the continuous wavelet transform. These functions are defined as analytical expressions, as functions either of time or of frequency. Most of the continuous wavelets are used for both wavelet decomposition and composition transforms. That is they are the continuous counterpart of orthogonal wavelets. The following continuous wavelets have been invented for various applications: Poisson wavelet Morlet wavelet Modified Morlet wavelet Mexican ha
Compressed sensingCompressed sensing (also known as compressive sensing, compressive sampling, or sparse sampling) is a signal processing technique for efficiently acquiring and reconstructing a signal, by finding solutions to underdetermined linear systems. This is based on the principle that, through optimization, the sparsity of a signal can be exploited to recover it from far fewer samples than required by the Nyquist–Shannon sampling theorem. There are two conditions under which recovery is possible.
Time–frequency representationA time–frequency representation (TFR) is a view of a signal (taken to be a function of time) represented over both time and frequency. Time–frequency analysis means analysis into the time–frequency domain provided by a TFR. This is achieved by using a formulation often called "Time–Frequency Distribution", abbreviated as TFD. TFRs are often complex-valued fields over time and frequency, where the modulus of the field represents either amplitude or "energy density" (the concentration of the root mean square over time and frequency), and the argument of the field represents phase.