COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
EE-726: Sparse stochastic processesWe cover the theory and applications of sparse stochastic processes (SSP). SSP are solutions of differential equations driven by non-Gaussian innovations. They admit a parsimonious representation in a
MICRO-512: Image processing IIStudy of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in Jupyter Notebooks; application to real-world examples in industrial vision and bio
MICRO-310(a): Signals and systems I (for MT)Présentation des concepts et des outils de base pour la caractérisation des signaux ainsi que pour l'analyse et la synthèse des systèmes linéaires (filtres ou canaux de transmission). Application de c
EE-550: Image and video processingThis course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
MICRO-310(b): Signals and systems I (for SV)Présentation des concepts et des outils de base pour l'analyse et la caractérisation des signaux, la conception de systèmes de traitement et la modélisation linéaire de systèmes pour les étudiants en
EE-512: Applied biomedical signal processingThe goal of this course is twofold: (1) to introduce physiological basis, signal acquisition solutions (sensors) and state-of-the-art signal processing techniques, and (2) to propose concrete examples