Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We highlight with first-principles molecular dynamics the persistence of intrinsic < 111 > Ti off-centerings for BaTiO3 in its cubic paraelectric phase. Intriguingly, these are inconsistent with the Pm (3) over barm space group often used to atomistically ...
We study the problem of learning unknown parameters of stochastic dynamical models from data. Often, these models are high dimensional and contain several scales and complex structures. One is then interested in obtaining a reduced, coarse-grained descript ...
By replacing part of Portland cement with so-called supplementary cementitious materials (SCMs) it is possible to reduce the CO2 footprint of the cement industry. These SCMs are commonly limestone, calcined clay, slag and fly ash. While doing so the early ...
All surfaces, whether they are natural or man-made, exhibit a certain amount of roughness on a range of length scales. This surface roughness evidently plays a major role in tribological processes, like friction and wear between two surfaces sliding agains ...
The most promising solution towards cementitious materials with a lower carbon footprint is the partial substitution of the clinker by supplementary cementitious materials (SCMs) such as fly ash, blast furnace slag, limestone and calcined clays. The produc ...
The use of molecular dynamics (MD) simulations has led to promising results to unravel the atomistic origins of adhesive wear, and in particular for the onset of wear at nanoscale surface asperities. However, MD simulations come with a high computational c ...
Solidification is a phase transformation of utmost importance in material science, for it largely controls materials' microstructure on which a wide range of mechanical properties depends. Almost every human artifact undergoes a transformation that leads t ...
Quantifying irreversibility of a system using finite information constitutes a major challenge in stochastic thermodynamics. We introduce an observable that measures the time-reversal asymmetry between two states after a given time lag. Our central result ...
We present a hydrodynamic theory for systems of dipolar active Brownian particles which, in the regime of weak dipolar coupling, predicts the onset of motility-induced phase separation (MIPS), consistent with Brownian dynamics (BD) simulations. The hydrody ...
Atomistic modeling of phase transitions, chemical reactions, or other rare events that involve overcoming high free energy barriers usually entails prohibitively long simulation times. Introducing a bias potential as a function of an appropriately chosen s ...