Transport economics is a branch of economics founded in 1959 by American economist John R. Meyer that deals with the allocation of resources within the transport sector. It has strong links to civil engineering. Transport economics differs from some other branches of economics in that the assumption of a spaceless, instantaneous economy does not hold. People and goods flow over networks at certain speeds. Demands peak. Advance ticket purchase is often induced by lower fares. The networks themselves may or may not be competitive. A single trip (the final good, in the consumer's eyes) may require the bundling of services provided by several firms, agencies and modes.
Although transport systems follow the same supply and demand theory as other industries, the complications of network effects and choices between dissimilar goods (e.g. car and bus travel) make estimating the demand for transportation facilities difficult. The development of models to estimate the likely choices between the goods involved in transport decisions (discrete choice models) led to the development of an important branch of econometrics, as well as a Nobel Prize for Daniel McFadden.
In transport, demand can be measured in number of journeys made or in total distance traveled across all journeys (e.g. passenger-kilometers for public transport or vehicle-kilometers of travel (VKT) for private transport). Supply is considered to be a measure of capacity. The price of the good (travel) is measured using the generalised cost of travel, which includes both money and time expenditure.
The effect of increases in supply (i.e. capacity) are of particular interest in transport economics (see induced demand), as the potential environmental consequences are significant (see externalities below).
In addition to providing benefits to their users, transport networks impose both positive and negative externalities on non-users. The consideration of these externalities – particularly the negative ones – is a part of transport economics.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
Since the start of the twentieth century, the role of cars has become highly important, though controversial. They are used throughout the world and have become the most popular mode of transport in many of the more developed countries. In developing countries, the effects of the car on society are not as visible, however they are nonetheless significant. The development of the car built upon the transport sector first started by railways. This has introduced sweeping changes in employment patterns, social interactions, infrastructure and the distribution of goods.
Sustainable transport refers to ways of transportation that are sustainable in terms of their social and environmental impacts. Components for evaluating sustainability include the particular vehicles used for road, water or air transport; the source of energy; and the infrastructure used to accommodate the transport (roads, railways, airways, waterways, canals and terminals). Transport operations and logistics as well as transit-oriented development are also involved in evaluation.
Explores the influence of transport effects on catalysis, focusing on the interplay between kinetics and mass transfer.
Explores transport effects in heterogeneous catalysis, emphasizing the impact of mass transfer on reaction kinetics and mechanisms.