In mathematics and logic, a vacuous truth is a conditional or universal statement (a universal statement that can be converted to a conditional statement) that is true because the antecedent cannot be satisfied.
It is sometimes said that a statement is vacuously true because it does not really say anything. For example, the statement "all cell phones in the room are turned off" will be true when no cell phones are in the room. In this case, the statement "all cell phones in the room are turned on" would also be vacuously true, as would the conjunction of the two: "all cell phones in the room are turned on and turned off", which would otherwise be incoherent and false.
More formally, a relatively well-defined usage refers to a conditional statement (or a universal conditional statement) with a false antecedent. One example of such a statement is "if Tokyo is in France, then the Eiffel Tower is in Bolivia".
Such statements are considered vacuous truths, because the fact that the antecedent is false prevents using the statement to infer anything about the truth value of the consequent. In essence, a conditional statement, that is based on the material conditional, is true when the antecedent ("Tokyo is in France" in the example) is false regardless of whether the conclusion or consequent ("the Eiffel Tower is in Bolivia" in the example) is true or false because the material conditional is defined in that way.
Examples common to everyday speech include conditional phrases used as idioms of improbability like "when hell freezes over..." and "when pigs can fly...", indicating that not before the given (impossible) condition is met will the speaker accept some respective (typically false or absurd) proposition.
In pure mathematics, vacuously true statements are not generally of interest by themselves, but they frequently arise as the base case of proofs by mathematical induction. This notion has relevance in pure mathematics, as well as in any other field that uses classical logic.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false. Material implication can also be characterized inferentially by modus ponens, modus tollens, conditional proof, and classical reductio ad absurdum. Material implication is used in all the basic systems of classical logic as well as some nonclassical logics.
Counterfactual conditionals (also subjunctive or X-marked) are conditional sentences which discuss what would have been true under different circumstances, e.g. "If Peter believed in ghosts, he would be afraid to be here." Counterfactuals are contrasted with indicatives, which are generally restricted to discussing open possibilities. Counterfactuals are characterized grammatically by their use of fake tense morphology, which some languages use in combination with other kinds of morphology including aspect and mood.
In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.
High comorbidity rates, especially mental-physical comorbidity, constitute an increasing health care burden, with women and men being differentially affected. To gain an overview of comorbidity rates stratified by sex across a range of different conditions ...
MDPI2022
For a set X of integer points in a polyhedron, the smallest number of facets of any polyhedron whose set of integer points coincides with X is called the relaxation complexity rc(X). This parameter was introduced by Kaibel & Weltge (2015) and captures the ...
2020
,
Let P be a set of n > d points in for d >= 2. It was conjectured by Zvi Schur that the maximum number of (d-1)-dimensional regular simplices of edge length diam(P), whose every vertex belongs to P, is n. We prove this statement under the condition that any ...