In mathematics and logic, a vacuous truth is a conditional or universal statement (a universal statement that can be converted to a conditional statement) that is true because the antecedent cannot be satisfied.
It is sometimes said that a statement is vacuously true because it does not really say anything. For example, the statement "all cell phones in the room are turned off" will be true when no cell phones are in the room. In this case, the statement "all cell phones in the room are turned on" would also be vacuously true, as would the conjunction of the two: "all cell phones in the room are turned on and turned off", which would otherwise be incoherent and false.
More formally, a relatively well-defined usage refers to a conditional statement (or a universal conditional statement) with a false antecedent. One example of such a statement is "if Tokyo is in France, then the Eiffel Tower is in Bolivia".
Such statements are considered vacuous truths, because the fact that the antecedent is false prevents using the statement to infer anything about the truth value of the consequent. In essence, a conditional statement, that is based on the material conditional, is true when the antecedent ("Tokyo is in France" in the example) is false regardless of whether the conclusion or consequent ("the Eiffel Tower is in Bolivia" in the example) is true or false because the material conditional is defined in that way.
Examples common to everyday speech include conditional phrases used as idioms of improbability like "when hell freezes over..." and "when pigs can fly...", indicating that not before the given (impossible) condition is met will the speaker accept some respective (typically false or absurd) proposition.
In pure mathematics, vacuously true statements are not generally of interest by themselves, but they frequently arise as the base case of proofs by mathematical induction. This notion has relevance in pure mathematics, as well as in any other field that uses classical logic.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En logique mathématique, l'implication est l'un des connecteurs binaires du langage du calcul des propositions, généralement représenté par le symbole « ⇒ » et se lisant « ... implique ... », « ... seulement si ... » ou, de façon équivalente, « si ..., alors ... » comme dans la phrase « s'il pleut, alors il y a des nuages ». L'implication admet des interprétations différentes selon les différents systèmes logiques (logique classique, modale, intuitionniste, etc.).
Les conditionnels contrefactuels (counterfactual conditionals en anglais) sont des propositions utilisées pour exprimer une situation hypothétique dans le passé et de leur conséquences imaginaires. Cette construction grammaticale est utilisée pour spéculer sur des situations qui n'ont pas réellement eu lieu, mais qui auraient pu se produire si les circonstances avaient été différentes. Le conditionnel contrefactuel se présente généralement sous la forme « Si A était le cas, alors B serait le cas ».
In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Explore la logique prédictive, en mettant l'accent sur les quantificateurs et les formes normales, soulignant l'importance de trouver des témoins et des contre-exemples.
Explique le schéma implicite d'Euler, une méthode de résolution numérique des équations différentielles, axée sur les propriétés de stabilité et de convergence.
High comorbidity rates, especially mental-physical comorbidity, constitute an increasing health care burden, with women and men being differentially affected. To gain an overview of comorbidity rates stratified by sex across a range of different conditions ...
For a set X of integer points in a polyhedron, the smallest number of facets of any polyhedron whose set of integer points coincides with X is called the relaxation complexity rc(X). This parameter was introduced by Kaibel & Weltge (2015) and captures the ...
Let P be a set of n > d points in for d >= 2. It was conjectured by Zvi Schur that the maximum number of (d-1)-dimensional regular simplices of edge length diam(P), whose every vertex belongs to P, is n. We prove this statement under the condition that any ...