In mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical illustration of a nildimensional space is a point. Specifically: A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement which is a cover by disjoint open sets. A topological space is zero-dimensional with respect to the finite-to-finite covering dimension if every finite open cover of the space has a refinement that is a finite open cover such that any point in the space is contained in exactly one open set of this refinement. A topological space is zero-dimensional with respect to the small inductive dimension if it has a base consisting of clopen sets. The three notions above agree for separable, metrisable spaces. A zero-dimensional Hausdorff space is necessarily totally disconnected, but the converse fails. However, a locally compact Hausdorff space is zero-dimensional if and only if it is totally disconnected. (See for the non-trivial direction.) Zero-dimensional Polish spaces are a particularly convenient setting for descriptive set theory. Examples of such spaces include the Cantor space and Baire space. Hausdorff zero-dimensional spaces are precisely the subspaces of topological powers where is given the discrete topology. Such a space is sometimes called a Cantor cube. If I is countably infinite, is the Cantor space. All points of a zero-dimensional manifold are isolated. In particular, the zero-dimensional hypersphere is a pair of points, and the zero-dimensional ball is a single point.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.