Concept

Born coordinates

Summary
In relativistic physics, the Born coordinate chart is a coordinate chart for (part of) Minkowski spacetime, the flat spacetime of special relativity. It is often used to analyze the physical experience of observers who ride on a ring or disk rigidly rotating at relativistic speeds, so called Langevin observers. This chart is often attributed to Max Born, due to his 1909 work on the relativistic physics of a rotating body. For overview of the application of accelerations in flat spacetime, see Acceleration (special relativity) and proper reference frame (flat spacetime). From experience by inertial scenarios (i.e. measurements in inertial frames), Langevin observers synchronize their clocks by standard Einstein convention or by slow clock synchronization, respectively (both internal synchronizations). For a certain Langevin observer this method works perfectly. Within its immediate vicinity clocks are synchronized and light propagates isotropic in space. But the experience when the observers try to synchronize their clocks along a closed path in space is puzzling: there are always at least two neighboring clocks which have different times. To remedy the situation, the observers agree on an external synchronization procedure (coordinate time t — or for ring-riding observers, a proper coordinate time for a fixed radius r). By this agreement, Langevin observers riding on a rigidly rotating disk will conclude from measurements of small distances between themselves that the geometry of the disk is non-Euclidean. Regardless of which method they use, they will conclude that the geometry is well approximated by a certain Riemannian metric, namely the Langevin–Landau–Lifschitz metric. This is in turn very well approximated by the geometry of the hyperbolic plane (with the negative curvatures –3 ω2 and –3 ω2 r2, respectively). But if these observers measure larger distances, they will obtain different results, depending upon which method of measurement they use! In all such cases, however, they will most likely obtain results which are inconsistent with any Riemannian metric.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.