Singular value decompositionIn linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any matrix. It is related to the polar decomposition. Specifically, the singular value decomposition of an complex matrix M is a factorization of the form where U is an complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, V is an complex unitary matrix, and is the conjugate transpose of V.
Matrix (mathematics)In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Spectral theoremIn mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces.
Diagonalizable matrixIn linear algebra, a square matrix is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix and a diagonal matrix such that , or equivalently . (Such , are not unique.) For a finite-dimensional vector space , a linear map is called diagonalizable if there exists an ordered basis of consisting of eigenvectors of .
Matrix ringIn abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.
Line (geometry)In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist embedded in two, three, or higher dimensional spaces. The word line may also refer to a line segment in everyday life that has two points to denote its ends (endpoints). A line can be referred to by two points that lie on it (e.g. ) or by a single letter (e.g. ).
Idempotent matrixIn linear algebra, an idempotent matrix is a matrix which, when multiplied by itself, yields itself. That is, the matrix is idempotent if and only if . For this product to be defined, must necessarily be a square matrix. Viewed this way, idempotent matrices are idempotent elements of matrix rings. Examples of idempotent matrices are: Examples of idempotent matrices are: If a matrix is idempotent, then implying so or implying so or Thus, a necessary condition for a matrix to be idempotent is that either it is diagonal or its trace equals 1.
Riesz representation theoremThe Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.
Zero matrixIn mathematics, particularly linear algebra, a zero matrix or null matrix is a matrix all of whose entries are zero. It also serves as the additive identity of the additive group of matrices, and is denoted by the symbol or followed by subscripts corresponding to the dimension of the matrix as the context sees fit. Some examples of zero matrices are The set of matrices with entries in a ring K forms a ring . The zero matrix in is the matrix with all entries equal to , where is the additive identity in K.
Invariant subspaceIn mathematics, an invariant subspace of a linear mapping T : V → V i.e. from some vector space V to itself, is a subspace W of V that is preserved by T; that is, T(W) ⊆ W. Consider a linear mapping An invariant subspace of has the property that all vectors are transformed by into vectors also contained in . This can be stated as Since maps every vector in into Since a linear map has to map A basis of a 1-dimensional space is simply a non-zero vector . Consequently, any vector can be represented as where is a scalar.