Summary
In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective. Examples of operators to which the spectral theorem applies are self-adjoint operators or more generally normal operators on Hilbert spaces. The spectral theorem also provides a canonical decomposition, called the spectral decomposition, of the underlying vector space on which the operator acts. Augustin-Louis Cauchy proved the spectral theorem for symmetric matrices, i.e., that every real, symmetric matrix is diagonalizable. In addition, Cauchy was the first to be systematic about determinants. The spectral theorem as generalized by John von Neumann is today perhaps the most important result of operator theory. This article mainly focuses on the simplest kind of spectral theorem, that for a self-adjoint operator on a Hilbert space. However, as noted above, the spectral theorem also holds for normal operators on a Hilbert space. We begin by considering a Hermitian matrix on (but the following discussion will be adaptable to the more restrictive case of symmetric matrices on ). We consider a Hermitian map A on a finite-dimensional complex inner product space V endowed with a positive definite sesquilinear inner product .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.