CS-450: Algorithms IIA first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
MATH-404: Functional analysis IIWe introduce locally convex vector spaces. As an example we treat the space of test functions and the space of distributions. In the second part of the course, we discuss differential calculus in Bana
MATH-502: Distribution and interpolation spacesThe goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
PHYS-757: Axiomatic Quantum Field TheoryPresentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...).
Proofs of
COM-417: Advanced probability and applicationsIn this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
EE-559: Deep learningThis course explores how to design reliable discriminative and generative neural networks, the ethics of data acquisition and model deployment, as well as modern multi-modal models.
MATH-410: Riemann surfacesThis course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
FIN-417: Quantitative risk managementThis course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
MATH-206: Analysis IVEn son coeur, c'est un cours d'analyse fonctionnelle pour les physiciens et traite les bases de théorie de mesure, des espaces des fonctions et opérateurs linéaires.