Summary
4-bit computing is the use of computer architectures in which integers and other data units are 4 bits wide. 4-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers or data buses of that size. Memory addresses (and thus address buses) for 4-bit CPUs are generally much larger than 4-bit (since only 16 memory locations would be very restrictive), such as 12-bit or more, while they could in theory be 8-bit. A group of four bits is also called a nibble and has 24 = 16 possible values. While 4-bit computing is mostly obsolete, 4-bit communication (even 1- or 2-bit) is still used in modern computers, that are otherwise e.g. 64-bit, and thus also have much larger buses. Some of the first microprocessors had a 4-bit word length and were developed around 1970. The first commercial microprocessor was the binary-coded decimal (BCD-based) Intel 4004, developed for calculator applications in 1971; it had a 4-bit word length, but had 8-bit instructions and 12-bit addresses. It was succeeded by the Intel 4040. The Texas Instruments TMS 1000 (1974) was a 4-bit CPU; it had a Harvard architecture, with an on-chip instruction ROM, 8-bit-wide instructions and an on-chip data RAM with 4-bit words. The Rockwell PPS-4 was another early 4-bit processor, introduced in 1972, which had a long lifetime in handheld games and similar roles. It was steadily improved and by 1975 been combined with several support chips to make a one-chip computer. The 4-bit processors were programmed in assembly language or Forth, e.g. "MARC4 Family of 4 bit Forth CPU" (which is now discontinued) because of the extreme size constraint on programs and because common programming languages (for microcontrollers, 8-bit and larger), such as the C programming language, do not support 4-bit data types (C, and C++, and more languages require that the size of the char data type be at least 8 bits, and that all data types other than bitfields have a size that is a multiple of the character size).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.