Summary
Boiling is the rapid phase transition from liquid to gas or vapor; the reverse of boiling is condensation. Boiling occurs when a liquid is heated to its boiling point, so that the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere. Boiling and evaporation are the two main forms of liquid vapourization. There are two main types of boiling: nucleate boiling where small bubbles of vapour form at discrete points, and critical heat flux boiling where the boiling surface is heated above a certain critical temperature and a film of vapour forms on the surface. Transition boiling is an intermediate, unstable form of boiling with elements of both types. The boiling point of water is 100 °C or 212 °F but is lower with the decreased atmospheric pressure found at higher altitudes. Boiling water is used as a method of making it potable by killing microbes and viruses that may be present. The sensitivity of different micro-organisms to heat varies, but if water is held at for one minute, most micro-organisms and viruses are inactivated. Ten minutes at a temperature of 70 °C (158 °F) is also sufficient to inactivate most bacteria. Boiling water is also used in several cooking methods including boiling, steaming, and poaching. The lowest heat flux seen in boiling is only sufficient to cause [natural convection], where the warmer fluid rises due to its slightly higher density. This condition occurs only when the superheat is very low, meaning that the hot surface near the fluid is nearly the same temperature as the boiling point. Nucleate boiling is characterised by the growth of bubbles or pops on a heated surface (heterogeneous nucleation), which rises from discrete points on a surface, whose temperature is only slightly above the temperature of the liquid. In general, the number of nucleation sites is increased by an increasing surface temperature. An irregular surface of the boiling vessel (i.e., increased surface roughness) or additives to the fluid (i.e.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.