Summary
In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, one may integrate a scalar field (that is, a function of position which returns a scalar as a value) over the surface, or a vector field (that is, a function which returns a vector as value). If a region R is not flat, then it is called a surface as shown in the illustration. Surface integrals have applications in physics, particularly with the theories of classical electromagnetism. Assume that f is a scalar, vector, or tensor field defined on a surface S. To find an explicit formula for the surface integral of f over S, we need to parameterize S by defining a system of curvilinear coordinates on S, like the latitude and longitude on a sphere. Let such a parameterization be r(s, t), where (s, t) varies in some region T in the plane. Then, the surface integral is given by where the expression between bars on the right-hand side is the magnitude of the cross product of the partial derivatives of r(s, t), and is known as the surface element (which would, for example, yield a smaller value near the poles of a sphere. where the lines of longitude converge more dramatically, and latitudinal coordinates are more compactly spaced). The surface integral can also be expressed in the equivalent form where g is the determinant of the first fundamental form of the surface mapping r(s, t). For example, if we want to find the surface area of the graph of some scalar function, say z = f(x, y), we have where r = (x, y, z) = (x, y, f(x, y)). So that , and . So, which is the standard formula for the area of a surface described this way. One can recognize the vector in the second-last line above as the normal vector to the surface. Because of the presence of the cross product, the above formulas only work for surfaces embedded in three-dimensional space.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (43)
Divergence theorem
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem which relates the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed. More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region inside the surface.
Three-dimensional space
In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, the Euclidean n-space of dimension n=3 that models physical space. More general three-dimensional spaces are called 3-manifolds. Technically, a tuple of n numbers can be understood as the Cartesian coordinates of a location in a n-dimensional Euclidean space.
Surface integral
In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, one may integrate a scalar field (that is, a function of position which returns a scalar as a value) over the surface, or a vector field (that is, a function which returns a vector as value). If a region R is not flat, then it is called a surface as shown in the illustration.
Show more
Related courses (46)
CH-341: Physical chemistry of interfaces
Acquire an understanding of interfacial phenomena, micro-heterogeneous colloidal solution systems and dynamic electrochemistry.
MATH-203(a): Analysis III
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et de l'analyse de Fourier-Laplace en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifiq
MATH-201: Analysis III
Calcul différentiel et intégral: Eléments d'analyse vectorielle, intégration par partie, intégrale curviligne, intégrale de surface, théorèmes de Stokes, Green, Gauss, fonctions harmoniques; Eléments
Show more
Related lectures (368)
Stokes Theorem in 3D: Change of Variables
Covers the application of Stokes theorem in 3D and the change of variables technique.
Surface Integrals, Divergence Theorem and Stocks' Theorem
Covers surface integrals, the divergence theorem, and Stocks' theorem through examples and analogies.
Surface Integrals and Parametrization
Explores the analogy between curves and surfaces, emphasizing the importance of choosing parameters for normal vectors.
Show more