En mathématiques, une intégrale de surface est une intégrale définie sur toute une surface qui peut être courbe dans l'espace. Pour une surface donnée, on peut intégrer sur un champ scalaire ou sur un champ vectoriel. Les intégrales de surface ont de nombreuses applications : par exemple, en physique, dans la théorie classique de l'électromagnétisme. Pour exprimer de façon explicite l'intégrale de surface, il faut généralement paramétrer la surface S en question en considérant un système de coordonnées curvilignes, comme la longitude et la latitude sur une sphère. Une fois le paramétrage x(s,t) trouvé, où s et t varient dans une région du plan, l'intégrale de surface d'un champ scalaire est donnée par la formule de changement de variables : En conséquence, l'aire de S est donnée par : Si on paramètre la sphère de rayon par où varie de 0 à et de 0 à , on aura et Le calcul de donne, après simplification, . Par conséquent l'intégrale sur la sphère S de rayon r vaut Si on prend on retrouvera bien la valeur de l'aire de la sphère. thumb|Un champ vectoriel sur une surface. Soit v un champ de vecteurs sur S : pour tout x de S, v(x) est un vecteur. L'intégrale de surface peut être définie composante par composante à partir de la définition de l'intégrale d'un champ scalaire; il s'agit d'un vecteur. C'est par exemple le cas pour l'expression du champ électrique créé en un point donné par une surface chargée, ou pour le champ gravitationnel créé en ce point par un objet sans épaisseur. Il est aussi possible d'intégrer la composante normale du champ de vecteurs; le résultat est alors un scalaire. Si, par exemple, un fluide traverse S, et si v(x) représente la vitesse locale du fluide au point x. Le flux (ou, ici, le débit) est défini comme étant la quantité de fluide traversant S par unité de temps. Comme on le voit par cet exemple, si le champ vectoriel est tangent à S en tous ses points, alors le flux est nul, car le fluide ne s'écoule que parallèlement à S, et ne la traverse jamais.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
MATH-203(a): Analysis III (for SV, MT)
The course studies the fundamental concepts of vector analysis and Fourier-Laplace analysis with a view to their use in solving multidisciplinary problems in scientific engineering.
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
MATH-203(c): Analysis III
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
Afficher plus
Séances de cours associées (146)
Intégrales de surface, théorème de divergence et théorème de Stocks
Couvre les intégrales de surface, le théorème de divergence et le théorème de Stocks à travers des exemples et des analogies.
Intégrales de surface et paramétrisation
Explore l'analogie entre les courbes et les surfaces, en soulignant l'importance du choix des paramètres pour les vecteurs normaux.
Théorème de Gauss dans Rn+1
Explore le théorème de Gauss dans Rn+1, couvrant les domaines réguliers, les champs vectoriels, les intégrales de surface et les calculs de volume.
Afficher plus
Publications associées (123)

Small-angle scattering tensor tomography algorithm for robust reconstruction of complex textures

Marianne Liebi, Manuel Guizar Sicairos

The development of small-angle scattering tensor tomography has enabled the study of anisotropic nanostructures in a volume-resolved manner. It is of great value to have reconstruction methods that can handle many different nanostructural symmetries. For s ...
Chester2023

A method and system for enforcing smoothness constraints on surface meshes from a graph convolutional neural network

Pascal Fua, Pamuditha Udaranga Wickramasinghe

A method for enforcing smoothness constraints on surface meshes produced by a Graph Convolutional Neural Network (GCNN) including the steps of reading image data from a memory, the image data including two-dimensional image data representing a three-dimens ...
2023

State-to-state surface scattering of methane studied by bolometric infrared laser tagging detection

Bo-Jung Chen

State-to-state molecule/surface scattering experiments prepare the incident molecules in a specific quantum state and measure the quantum state distribution of the scattered molecules. The comparison of state resolved experiments with theory can serve as s ...
EPFL2022
Afficher plus
Concepts associés (22)
Théorème de la divergence
En analyse vectorielle, le théorème de la divergence (également appelé théorème de Green-Ostrogradski ou théorème de flux-divergence), affirme l'égalité entre l'intégrale de la divergence d'un champ vectoriel sur un volume dans et le flux de ce champ à travers la frontière du volume (qui est une intégrale de surface). L'égalité est la suivante : où : est le volume ; est la frontière de est le vecteur normal à la surface, dirigé vers l'extérieur et de norme égale à l'élément de surface qu'il représente est continûment dérivable en tout point de ; est l'opérateur nabla ; (valable uniquement en coordonnées cartésiennes).
Trois dimensions
Trois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Intégrale curviligne
En géométrie différentielle, l'intégrale curviligne est une intégrale où la fonction à intégrer est évaluée sur une courbe Γ. Il y a deux types d'intégrales curvilignes, selon que la fonction est à valeurs réelles ou à valeurs dans les formes linéaires. Le second type (qui peut se reformuler en termes de circulation d'un champ de vecteurs) a comme cas particulier les intégrales que l'on considère en analyse complexe. Dans cet article, Γ est un arc orienté dans R, rectifiable c'est-à-dire paramétré par une fonction continue à variation bornée t ↦ γ(t), avec t ∈ [a, b].
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.