Summary
In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes are typically classified by their spatial dimension, which is indicated by a number written after the D. A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory. There are also instantonic D(–1)-branes, which are localized in both space and time. D-branes were discovered by Jin Dai, Leigh, and Polchinski, and independently by Hořava, in 1989. In 1995, Polchinski identified D-branes with black p-brane solutions of supergravity, a discovery that triggered the Second Superstring Revolution and led to both holographic and M-theory dualities. The equations of motion of string theory require that the endpoints of an open string (a string with endpoints) satisfy one of two types of boundary conditions: The Neumann boundary condition, corresponding to free endpoints moving through spacetime at the speed of light, or the Dirichlet boundary conditions, which pin the string endpoint. Each coordinate of the string must satisfy one or the other of these conditions. There can also exist strings with mixed boundary conditions, where the two endpoints satisfy NN, DD, ND and DN boundary conditions. If p spatial dimensions satisfy the Neumann boundary condition, then the string endpoint is confined to move within a p-dimensional hyperplane. This hyperplane provides one description of a Dp-brane. Although rigid in the limit of zero coupling, the spectrum of open strings ending on a D-brane contains modes associated with its fluctuations, implying that D-branes are dynamical objects. When D-branes are nearly coincident, the spectrum of strings stretching between them becomes very rich. One set of modes produce a non-abelian gauge theory on the world-volume. Another set of modes is an dimensional matrix for each transverse dimension of the brane.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.