**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# D-brane

Summary

In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named.

D-branes are typically classified by their spatial dimension, which is indicated by a number written after the D. A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory. There are also instantonic D(–1)-branes, which are localized in both space and time. Discovery D-branes were discovered by Jin Dai, Leigh, and Polchinski, and independently by Hořava, in 1989. In 1995, Polchinski identified D-branes with black p-brane solutions of supergravity, a discovery that triggered the Second Superstring Revolution and led to both holographic and M-theory dualities. Theoretical background The equations of motion of string theory require that the endp

D-branes are typically classified by their spatial dimension, which is indicated by a number written after the D. A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory. There are also instantonic D(–1)-branes, which are localized in both space and time. Discovery D-branes were discovered by Jin Dai, Leigh, and Polchinski, and independently by Hořava, in 1989. In 1995, Polchinski identified D-branes with black p-brane solutions of supergravity, a discovery that triggered the Second Superstring Revolution and led to both holographic and M-theory dualities. Theoretical background The equations of motion of string theory require that the endp

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (21)

Loading

Loading

Loading

Related people (1)

Related units

No results

Related courses (1)

This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.

Related concepts (19)

String theory

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these s

M-theory

M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the Universi

Superstring theory

Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings.
'Superstring theory' is

Related lectures (1)

We derive the general form of the anomaly for chiral spinors and self-dual antisymmetric tensors living on D-brane and O-plane intersections, using both path-integral and index theorem methods. We then show that the anomalous couplings to RR forms of D-branes and O-planes in a general background are precisely those required to cancel these anomalies through the inflow mechanism. This allows, for instance, for local anomaly cancellation in generic orientifold models, the relevant Green-Schwarz term being given by the sum of the anomalous couplings of all the D-branes and O-planes in the model. (C) 1999 Elsevier Science B.V. All rights reserved.

1999We present a generalization of the Dvali-Gabadadze-Porrati scenario to higher codimensions which, unlike previous attempts, is free of ghost instabilities. The 4D propagator is made regular by embedding our visible 3-brane within a 4-brane, each with their own induced gravity terms, in a flat 6D bulk. The model is ghost-free if the tension on the 3-brane is larger than a certain critical value, while the induced metric remains flat. The gravitational force law "cascades" from a 6D behavior at the largest distances followed by a 5D and finally a 4D regime at the shortest scales.

2008Recent proposals of large and infinite extra dimensions triggered a strong research activity in theories in which our universe is considered as a sub-manifold of some higher-dimensional space-time, a so-called 3-brane. In this context, it is generally assumed that some mechanism is at work which binds Standard Model particles to the 3-brane, an effect often referred to as the localization of matter on the brane. Gravity, however, is allowed to propagate in general also in the extra dimensions. As demonstrated by Randall and Sundrum in 1999, it is also possible to localize gravity itself on a 3-brane. In the setup they proposed. the 3-brane is realized as a singular domain wall separating two patches of 3-dimensional anti-de-Sitter (AdS5) space-time. The potential between two test masses on the brane at distances larger than the AdS5-radius was shown to be the usual 4-dimensional Newtonian 1/r potential with strongly suppressed corrections. The model of Randall and Sundrum, usually referred to as the Randall-Sundrum II setup, constitutes the center of interest for this thesis. The main goal of this work is to find possible generalizations to higher dimensions of the simple setup considered by Randall and Sundrum. One of the motivations for such a generalization is that a realistic theory should possibly be able to explain the chiral nature of 4-dimensional fermions on the brane. One way to explain chiral fermions from higher dimensions is to consider 3-braves identified with the cores of topological defects located in a higher-dimensional transverse space. Naturally a richer topological structure of the field configuration in transverse space provides the possibility of a more realistic spectrum of chiral fermions localized on the 3-brane. After two introductory chapters on extra dimensions and non-factorizable geometries which are relevant for the Randall-Sundrum II model, we briefly discuss basics of topological defects in the following third chapter. In the rest of the third chapter we consider various solutions to higher-dimensional Einstein equations coupled to a series of physically different sources and discuss their properties of localization of gravity. Due to their asymptotic nature, these solutions are only valid far from the cores of the defects in transverse space. Therefore, it seems reasonable to complement the consideration by presenting a particular numerical example of a solution to the Einstein equations coupled to a set of scalar and gauge fields: this solution describes a 3-brave realized as a 't Hooft-Polyakov monopole residing in the 3-dimensional transverse space of a 7-dimensional space-time. The last chapter of this work is dedicated to the study of a modification of the original Randall-Sundrum II model of another kind. The motivation is given by the geodesic incompleteness of the latter scenario with respect to time-like and light-like geodesics. We will describe a model which resembles the Randall-Sundrurn II model with respect to its properties of gravity localization but with the advantage that the underlying space-time manifold is geodesically complete. Parts of the calculations related to the properties of gravity at low energies in this model are rather technical in nature and we therefore preferred to assemble them in several appendices. We finally add some concluding remarks and discuss possible further developments.