An earth-leakage circuit breaker (ELCB) is a safety device used in electrical installations with high Earth impedance to prevent shock. It detects small stray voltages on the metal enclosures of electrical equipment, and interrupts the circuit if a dangerous voltage is detected. Once widely used, more recent installations instead use residual-current devices (RCDs, RCCBs or GFCIs) which instead detect leakage current directly.
The main purpose of Earth leakage protectors is to prevent injury to humans and animals due to electric shock.
This is a category of devices, which are used to protect instruments, circuits and operators, while Earth leakage. Early ELCBs were voltage operated devices (VO-ELCB), detecting a voltage rise between installation metalwork, and an external electrode. These have now been replaced by current sensing devices (RCD/RCCB). In modern literature voltage sensing devices are called ELCB or VOELCB and current sensing devices are called RCCB or RCD.
Voltage sensing ELCBs were first introduced about sixty years ago. Current sensing ELCBs were first introduced about forty years ago. For many years, the voltage operated ELCB and the differential current operated ELCB were both referred to as ELCBs because it was a simpler name to remember. But the use of a common name for two different devices gave rise to considerable confusion in the electrical industry.
If the wrong type was used on an installation, the level of protection given could be substantially less than that intended, in particular the voltage operated type can only protect against faults or shocks to metalwork connected to the circuit ground, connected to the VOELCB, it cannot detect current leaving a live wire and running to ground by another path, such as via a person standing on the earth.
To eliminate this confusion, the IEC decided to apply the term residual current device (RCD) to differential-current-operated ELCBs. Residual current refers to any residue when comparing current in the outbound and return currents in the circuit.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours a pour objectif de présenter les éléments principaux relatifs à la conception et l¿exploitation des réseaux électriques de distribution (moyenne et basse tension) tout en tenant compte de la
A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by overcurrent. Its basic function is to interrupt current flow to protect equipment and to prevent the risk of fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset (either manually or automatically) to resume normal operation. Circuit breakers are made in varying sizes, from small devices that protect low-current circuits or individual household appliances, to large switchgear designed to protect high voltage circuits feeding an entire city.
Circuit breakers (CBs) play an important role in modern society because they make the power transmission and distribution systems reliable and resilient. Therefore, it is important to maintain their reliability and to monitor their operation. A key to ensu ...
The concerns for climate change and the transition to renewables is increasing the relevance of superconducting applications: High Temperature Superconductor (HTS) cables for efficient power transmission, superconducting magnets for nuclear fusion, superco ...
Dopant-free passivating contacts for photovoltaics have the potential to be deposited at low costs, while providing excellent surface passivation and low contact resistance. However, one pressing issue of dopant-free carrier selective contacts is their low ...