Airborne wind energy (AWE) is the direct use or generation of wind energy by the use of aerodynamic or aerostatic lift devices. AWE technology is able to harvest high altitude winds, in contrast to wind turbines, which use a rotor mounted on a tower.
The term high-altitude wind power (HAWP) has been used to refer to AWE systems. However, semantically HAWP might also include wind energy conversion systems that are somehow positioned at a large height from the ground or sea surface.
Various mechanisms are proposed for capturing the kinetic energy of winds such as kites, kytoons, aerostats, gliders, gliders with turbines for regenerative soaring, sailplanes with turbines, or other airfoils, including multiple-point building- or terrain-enabled holdings. Once the mechanical energy is derived from the wind's kinetic energy, then many options are available for using that mechanical energy: direct traction, conversion to electricity aloft or at ground station, conversion to laser or microwave for power beaming to other aircraft or ground receivers. Energy generated by a high-altitude system may be used aloft or sent to the ground surface by conducting cables, mechanical force through a tether, rotation of endless line loop, movement of changed chemicals, flow of high-pressure gases, flow of low-pressure gases, or laser or microwave power beams.
Winds at higher altitudes become steadier, more persistent, and of higher velocity. Because power available in wind increases as the cube of velocity (the velocity-cubed law), assuming other parameters remaining the same, doubling a wind's velocity gives 23=8 times the power; tripling the velocity gives 33=27 times the available power. With steadier and more predictable winds, high-altitude wind has an advantage over wind near the ground. Being able to locate HAWP to effective altitudes and using the vertical dimension of airspace for wind farming brings further advantage using high-altitude winds for generating energy.