Airborne wind energy (AWE) is the direct use or generation of wind energy by the use of aerodynamic or aerostatic lift devices. AWE technology is able to harvest high altitude winds, in contrast to wind turbines, which use a rotor mounted on a tower.
The term high-altitude wind power (HAWP) has been used to refer to AWE systems. However, semantically HAWP might also include wind energy conversion systems that are somehow positioned at a large height from the ground or sea surface.
Various mechanisms are proposed for capturing the kinetic energy of winds such as kites, kytoons, aerostats, gliders, gliders with turbines for regenerative soaring, sailplanes with turbines, or other airfoils, including multiple-point building- or terrain-enabled holdings. Once the mechanical energy is derived from the wind's kinetic energy, then many options are available for using that mechanical energy: direct traction, conversion to electricity aloft or at ground station, conversion to laser or microwave for power beaming to other aircraft or ground receivers. Energy generated by a high-altitude system may be used aloft or sent to the ground surface by conducting cables, mechanical force through a tether, rotation of endless line loop, movement of changed chemicals, flow of high-pressure gases, flow of low-pressure gases, or laser or microwave power beams.
Winds at higher altitudes become steadier, more persistent, and of higher velocity. Because power available in wind increases as the cube of velocity (the velocity-cubed law), assuming other parameters remaining the same, doubling a wind's velocity gives 23=8 times the power; tripling the velocity gives 33=27 times the available power. With steadier and more predictable winds, high-altitude wind has an advantage over wind near the ground. Being able to locate HAWP to effective altitudes and using the vertical dimension of airspace for wind farming brings further advantage using high-altitude winds for generating energy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The present invention concerns a method of manoeuvring a vertical take-off and landing, unmanned aerial drone (100) comprising at least an aerodynamic surface (101), wherein, during a flight of the drone, the aerodynamic surface generates lift and/or drag ...
2024
In this thesis, we explore the best practice of simulating the wakes of the turbines under active yaw control (AYC) using large-eddy simulation (LES). In the first study, we validate the blade-element actuator disk model (ADM-BE) for a yawed wind turbine. ...
EPFL2023
According to the International Energy Agency, the global net-zero emissions objective requires the installed wind power capacity to increase 11-fold between 2020 and 2050. The scientific community has recently voiced concerns about the logistic feasibility ...
Kites are tethered flying objects which fly by using aerodynamic lift, requiring wind (or towing) for generation of airflow over the lifting surfaces. Various types of kites exist, depending on features such as material, shape, use, or operating skills,Wind required. Kites may fly in air, water, or other fluids such as gas and other liquid gaining lift through deflection of the supporting medium. Variations in design of tethering systems and lifting surfaces are regularly introduced, with lifting surfaces varying in stiffness from limp sheet material to fully solid material.
An airborne wind turbine is a design concept for a wind turbine with a rotor supported in the air without a tower, thus benefiting from the higher velocity and persistence of wind at high altitudes, while avoiding the expense of tower construction, or the need for slip rings or yaw mechanism. An electrical generator may be on the ground or airborne. Challenges include safely suspending and maintaining turbines hundreds of meters off the ground in high winds and storms, transferring the harvested and/or generated power back to earth, and interference with aviation.
A power kite or traction kite is a large kite designed to provide significant pull to the user. The two most common forms are the foil, and the leading edge inflatable. There are also other less common types of power kite including rigid-framed kites and soft single skin kites. There are several different control systems used with these kites which have two to five lines and a bar or handles. Foil kites consist of a number of cells with cloth ribs in each cell.