In electrical engineering, a vacuum interrupter is a switch which uses electrical contacts in a vacuum. It is the core component of medium-voltage circuit-breakers, generator circuit-breakers, and high-voltage circuit-breakers. Separation of the electrical contacts results in a metal vapour arc, which is quickly extinguished. Vacuum interrupters are widely used in utility power transmission systems, power generation unit, and power-distribution systems for railways, arc furnace applications, and industrial plants.
Since the arc is contained within the interrupter, switchgear using vacuum interrupters are very compact compared with switchgear using air, SF6 or oil as arc-suppression medium. Vacuum interrupters can be used for circuit-breakers and load switches. Circuit-breaker vacuum interrupters are used primarily in the power sector in substation and power-generation facilities, and load-switching vacuum interrupters are used for power-grid end users.
The use of a vacuum for switching electrical currents was motivated by the observation that a one-centimeter gap in an X-ray tube could withstand tens of thousands of volts. Although some vacuum switching devices were patented during the 19th century, they were not commercially available. In 1926, a group led by Royal Sorensen at the California Institute of Technology investigated vacuum switching and tested several devices; fundamental aspects of arc interruption in a vacuum were investigated. Sorenson presented the results at an AIEE meeting that year, and predicted the switches' commercial use. In 1927, General Electric purchased the patent rights and began commercial development. The Great Depression and the development of oil-filled switchgear caused the company to reduce development work, and little commercially important work was done on vacuum power switchgear until the 1950s.
In 1956, H. Cross revolutionized the high-frequency-circuit vacuum switch and produced a vacuum switch with a rating of 15 kV at 200 A. Five years later, Thomas H.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by overcurrent. Its basic function is to interrupt current flow to protect equipment and to prevent the risk of fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset (either manually or automatically) to resume normal operation. Circuit breakers are made in varying sizes, from small devices that protect low-current circuits or individual household appliances, to large switchgear designed to protect high voltage circuits feeding an entire city.
A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages.
Vacuum circuit breakers (VCBs) are widely used for medium voltage applications when low maintenance, long operating life, and large number of allowable switching cycles are required. The accurate estimation of the transient recovery voltages (TRVs) associa ...
Circuit breakers (CBs) play an important role in modern society because they make the power transmission and distribution systems reliable and resilient. Therefore, it is important to maintain their reliability and to monitor their operation. A key to ensu ...
DC power supply systems utilising voltage source converters offer several advantages compared with their counterparts in marine low-voltage DC power distribution networks. In case of a two-level voltage source converter fed by a synchronous generator which ...