The lateral line, also called the lateral line organ (LLO), is a system of sensory organs found in fish, used to detect movement, vibration, and pressure gradients in the surrounding water. The sensory ability is achieved via modified epithelial cells, known as hair cells, which respond to displacement caused by motion and transduce these signals into electrical impulses via excitatory synapses. Lateral lines play an important role in schooling behavior, predation, and orientation.
Early in the evolution of fish, some of the sensory organs of the lateral line were modified to function as the electroreceptors called ampullae of Lorenzini. The lateral line system is ancient and basal to the vertebrate clade, as it is found in fishes that diverged over 400 million years ago.
The lateral line system allows the detection of movement, vibration, and pressure gradients in the water surrounding an animal. It plays an essential role in orientation, predation, and fish schooling by providing spatial awareness and the ability to navigate in the environment. Analysis has shown that the lateral line system should be an effective passive sensing system able to discriminate between submerged obstacles by their shape.
The lateral line system enables predatory fishes to detect vibrations made by their prey, and to orient towards the source to begin predatory action. Blinded predatory fishes remain able to hunt, but not when lateral line function is inhibited by cobalt ions.
The lateral line plays a role in fish schooling. Blinded Pollachius virens were able to integrate into a school, whereas fish with severed lateral lines could not. It may have evolved further to allow fish to forage in dark caves. In Mexican blind cave fish, Astyanax mexicanus, neuromasts in and around the orbit of the eye are bigger and around twice as sensitive as those of surface-living fish.
One function of schooling may be to confuse the lateral line of predatory fishes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Electroreception and electrogenesis are the closely related biological abilities to perceive electrical stimuli and to generate electric fields. Both are used to locate prey; stronger electric discharges are used in a few groups of fishes (most famously the electric eel, which is not actually an eel but a knifefish) to stun prey. The capabilities are found almost exclusively in aquatic or amphibious animals, since water is a much better conductor of electricity than air.
A fish (: fish or fishes) is an aquatic, craniate, gill-bearing animal that lacks limbs with digits. Included in this definition are the living hagfish, lampreys, and cartilaginous and bony fish as well as various extinct related groups. Approximately 95% of living fish species are ray-finned fish, belonging to the class Actinopterygii, with around 99% of those being teleosts. The earliest organisms that can be classified as fish were soft-bodied chordates that first appeared during the Cambrian period.
A sense is a biological system used by an organism for sensation, the process of gathering information about the world through the detection of stimuli. Although in some cultures five human senses were traditionally identified as such (namely sight, smell, touch, taste, and hearing), it is now recognized that there are many more. Senses used by non-human organisms are even greater in variety and number. During sensation, sense organs collect various stimuli (such as a sound or smell) for transduction, meaning transformation into a form that can be understood by the brain.
Providing a naturalistic tactile sensory feedback is currently one of the key challenges in neuroprosthetics. Modeling has played a fundamental role in the development of "biomimetic" stimulation protocols, determining optimal activation patterns to be eli ...
Although conceptually simple, the air-water interface displays rich behavior and is subject to intense experimental and theoretical investigations. Different definitions of the electrostatic surface potential as well as different calculation methods, each ...
AIP Publishing2022
, ,
The recently invented laterally excited bulk wave resonators (XBARs) demonstrate outstanding parameters suitable for the design of low loss filters for the fifth generation of mobile phones. The operation of XBARs can be interpreted as an excitation of ant ...