Lagrange's theorem (group theory)In the mathematical field of group theory, Lagrange's theorem is a theorem that states that for any finite group G, the order (number of elements) of every subgroup of G divides the order of G. The theorem is named after Joseph-Louis Lagrange. The following variant states that for a subgroup of a finite group , not only is an integer, but its value is the index , defined as the number of left cosets of in . Lagrange's theorem This variant holds even if is infinite, provided that , , and are interpreted as cardinal numbers.
Carmichael functionIn number theory, a branch of mathematics, the Carmichael function λ(n) of a positive integer n is the smallest positive integer m such that holds for every integer a coprime to n. In algebraic terms, λ(n) is the exponent of the multiplicative group of integers modulo n. The Carmichael function is named after the American mathematician Robert Carmichael who defined it in 1910. It is also known as Carmichael's λ function, the reduced totient function, and the least universal exponent function.
Prime omega functionIn number theory, the prime omega functions and count the number of prime factors of a natural number Thereby (little omega) counts each distinct prime factor, whereas the related function (big omega) counts the total number of prime factors of honoring their multiplicity (see arithmetic function). That is, if we have a prime factorization of of the form for distinct primes (), then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.
On-Line Encyclopedia of Integer SequencesThe On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to the OEIS Foundation in 2009. Sloane is the chairman of the OEIS Foundation. OEIS records information on integer sequences of interest to both professional and amateur mathematicians, and is widely cited. , it contains over 360,000 sequences, making it the largest database of its kind.
Primitive root modulo nIn modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gk ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n. So g is a primitive root modulo n if and only if g is a generator of the multiplicative group of integers modulo n.
Dirichlet characterIn analytic number theory and related branches of mathematics, a complex-valued arithmetic function is a Dirichlet character of modulus (where is a positive integer) if for all integers and : that is, is completely multiplicative. (gcd is the greatest common divisor) that is, is periodic with period . The simplest possible character, called the principal character, usually denoted , (see Notation below) exists for all moduli: The German mathematician Peter Gustav Lejeune Dirichlet—for whom the character is named—introduced these functions in his 1837 paper on primes in arithmetic progressions.
Farey sequenceIn mathematics, the Farey sequence of order n is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size. With the restricted definition, each Farey sequence starts with the value 0, denoted by the fraction 0/1, and ends with the value 1, denoted by the fraction 1/1 (although some authors omit these terms).
Euler's theoremIn number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem) states that, if n and a are coprime positive integers, and is Euler's totient function, then a raised to the power is congruent to 1 modulo n; that is In 1736, Leonhard Euler published a proof of Fermat's little theorem (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number.
Modular multiplicative inverseIn mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. In the standard notation of modular arithmetic this congruence is written as which is the shorthand way of writing the statement that m divides (evenly) the quantity ax − 1, or, put another way, the remainder after dividing ax by the integer m is 1.
Average order of an arithmetic functionIn number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average". Let be an arithmetic function. We say that an average order of is if as tends to infinity. It is conventional to choose an approximating function that is continuous and monotone. But even so an average order is of course not unique. In cases where the limit exists, it is said that has a mean value (average value) .