Concept

Euxinia

Summary
Euxinia or euxinic conditions occur when water is both anoxic and sulfidic. This means that there is no oxygen (O2) and a raised level of free hydrogen sulfide (H2S). Euxinic bodies of water are frequently strongly stratified, have an oxic, highly productive, thin surface layer, and have anoxic, sulfidic bottom water. The word euxinia is derived from the Greek name for the Black Sea (Εὔξεινος Πόντος (Euxeinos Pontos)) which translates to "hospitable sea". Euxinic deep water is a key component of the Canfield ocean, a model of oceans during the Proterozoic period (known as the Boring Billion) proposed by Donald Canfield, an American geologist, in 1998. There is still debate within the scientific community on both the duration and frequency of euxinic conditions in the ancient oceans. Euxinia is relatively rare in modern bodies of water, but does still happen in places like the Black Sea and certain fjords. Euxinia most frequently occurred in the Earth's ancient oceans, but its distribution and frequency of occurrence are still under debate. The original model was that it was quite constant for approximately a billion years. Some meta-analyses have questioned how persistent euxinic conditions were based on relatively small black shale deposits in a period when the ocean should have theoretically been preserving more organic matter. Before the Great Oxygenation Event happened approximately 2.3 billion years ago, there was little free oxygen in either the atmosphere or the ocean. It was originally thought that the ocean accumulated oxygen soon after the atmosphere did, but this idea was challenged by Canfield in 1998 when he proposed that instead of the deep ocean becoming oxidizing, it became sulfidic. This hypothesis is partially based on the disappearance of banded iron formations from the geological records 1.8 billion years ago. Canfield argued that although enough oxygen entered the atmosphere to erode sulfides in continental rocks, there was not enough oxygen to mix into the deep ocean.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
ENV-202: Microbiology for engineers
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that