Summary
Collective cell migration describes the movements of group of cells and the emergence of collective behavior from cell-environment interactions and cell-cell communication. Collective cell migration is an essential process in the lives of multicellular organisms, e.g. embryonic development, wound healing and cancer spreading (metastasis). Cells can migrate as a cohesive group (e.g. epithelial cells) or have transient cell-cell adhesion sites (e.g. mesenchymal cells). They can also migrate in different modes like sheets, strands, tubes, and clusters. While single-cell migration has been extensively studied, collective cell migration is a relatively new field with applications in preventing birth defects or dysfunction of embryos. It may improve cancer treatment by enabling doctors to prevent tumors from spreading and forming new tumors. The environment of the migrating cell can affect its speed, persistence and direction of migration by stimulating it. The extracellular matrix (ECM) provides not only the structural and biochemical support, but also plays a major role in regulating cell behavior. Different ECM proteins (such as collagen, elastin, fibronectin, laminin, and others) allow cells to adhere and migrate, while forming focal adhesions in the front and disassembling them in the back. Using these adhesion sites, cells also sense the mechanical properties of the ECM. Cells can be guided by a gradient of those proteins (haptotaxis) or a gradient of soluble substrates in the liquid phase surrounding the cell (chemotaxis). Cells sense the substrate through their receptors and migrate toward the concentration (or the opposite direction). Another form of stimulation can be rigidity gradients of the ECM (durotaxis). Collective cell migration is enhanced by geometrical confinement of an extracellular matrix molecule (e.g. the proteoglycan versican in neural crest cells), that acts as a barrier, to promote the emergence of organized migration in separated streams.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.