Rectified 24-cellIn geometry, the rectified 24-cell or rectified icositetrachoron is a uniform 4-dimensional polytope (or uniform 4-polytope), which is bounded by 48 cells: 24 cubes, and 24 cuboctahedra. It can be obtained by rectification of the 24-cell, reducing its octahedral cells to cubes and cuboctahedra. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC24. It can also be considered a cantellated 16-cell with the lower symmetries B4 = [3,3,4]. B4 would lead to a bicoloring of the cuboctahedral cells into 8 and 16 each.
Runcinated 24-cellsIn four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination (a 3rd order truncation) of the regular 24-cell. There are 3 unique degrees of runcinations of the 24-cell including with permutations truncations and cantellations. In geometry, the runcinated 24-cell or small prismatotetracontoctachoron is a uniform 4-polytope bounded by 48 octahedra and 192 triangular prisms. The octahedral cells correspond with the cells of a 24-cell and its dual. E. L.
Runcinated 120-cellsIn four-dimensional geometry, a runcinated 120-cell (or runcinated 600-cell) is a convex uniform 4-polytope, being a runcination (a 3rd order truncation) of the regular 120-cell. There are 4 degrees of runcinations of the 120-cell including with permutations truncations and cantellations. The runcinated 120-cell can be seen as an expansion applied to a regular 4-polytope, the 120-cell or 600-cell. The runcinated 120-cell or small disprismatohexacosihecatonicosachoron is a uniform 4-polytope.
Cantellated 120-cellIn four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation) of the regular 120-cell. There are four degrees of cantellations of the 120-cell including with permutations truncations. Two are expressed relative to the dual 600-cell. The cantellated 120-cell is a uniform 4-polytope. It is named by its construction as a Cantellation operation applied to the regular 120-cell. It contains 1920 cells, including 120 rhombicosidodecahedra, 1200 triangular prisms, 600 octahedra.
Truncated tesseractIn geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract. There are three truncations, including a bitruncation, and a tritruncation, which creates the truncated 16-cell. The truncated tesseract is bounded by 24 cells: 8 truncated cubes, and 16 tetrahedra. Truncated tesseract (Norman W. Johnson) Truncated tesseract (Acronym tat) (George Olshevsky, and Jonathan Bowers) The truncated tesseract may be constructed by truncating the vertices of the tesseract at of the edge length.
RuncinationIn geometry, runcination is an operation that cuts a regular polytope (or honeycomb) simultaneously along the faces, edges, and vertices, creating new facets in place of the original face, edge, and vertex centers. It is a higher order truncation operation, following cantellation, and truncation. It is represented by an extended Schläfli symbol t0,3{p,q,...}. This operation only exists for 4-polytopes {p,q,r} or higher. This operation is dual-symmetric for regular uniform 4-polytopes and 3-space convex uniform honeycombs.
Cantellated 5-cellIn four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation, up to edge-planing) of the regular 5-cell. The cantellated 5-cell or small rhombated pentachoron is a uniform 4-polytope. It has 30 vertices, 90 edges, 80 faces, and 20 cells. The cells are 5 cuboctahedra, 5 octahedra, and 10 triangular prisms. Each vertex is surrounded by 2 cuboctahedra, 2 triangular prisms, and 1 octahedron; the vertex figure is a nonuniform triangular prism.
Cantellated 24-cellsIn four-dimensional geometry, a cantellated 24-cell is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation) of the regular 24-cell. There are 2 unique degrees of cantellations of the 24-cell including permutations with truncations. The cantellated 24-cell or small rhombated icositetrachoron is a uniform 4-polytope. The boundary of the cantellated 24-cell is composed of 24 truncated octahedral cells, 24 cuboctahedral cells and 96 triangular prisms.