Summary
In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change ΔH⚬ is negative." Exothermic reactions usually release heat. The term is often confused with exergonic reaction, which IUPAC defines as "... a reaction for which the overall standard Gibbs energy change ΔG⚬ is negative." A strongly exothermic reaction will usually also be exergonic because ΔH⚬ makes a major contribution to ΔG⚬. Most of the spectacular chemical reactions that are demonstrated in classrooms are exothermic and exergonic. The opposite is an endothermic reaction, which usually takes up heat and is driven by an entropy increase in the system. Examples are numerous: combustion, the thermite reaction, combining strong acids and bases, polymerizations. As an example in everyday life, hand warmers make use of the oxidation of iron to achieve an exothermic reaction: 4Fe + 3O2 → 2Fe2O3 ΔH⚬ = - 1648 kJ/mol A particularly important class of exothermic reactions is combustion of a hydrocarbon fuel, e.g. the burning of natural gas: CH4 + 2O2 → CO2 + 2H2O ΔH⚬ = - 890 kJ/mol These sample reactions are strongly exothermic. Uncontrolled exothermic reactions, those leading to fires and explosions, are wasteful because it is difficult to capture the released energy. Nature effects combustion reactions under highly controlled conditions, avoiding fires and explosions, in aerobic respiration so as to capture the released energy, e.g. for the formation of ATP. The enthalpy of a chemical system is essentially its energy. The enthalpy change ΔH for a reaction is equal to the heat q transferred out of (or into) a closed system at constant pressure without in- or output of electrical energy. Heat production or absorption in a chemical reaction is measured using calorimetry, e.g. with a bomb calorimeter. One common laboratory instrument is the reaction calorimeter, where the heat flow from or into the reaction vessel is monitored. The heat release and corresponding energy change, Δ, of a combustion reaction can be measured particularly accurately.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (16)
Related concepts (33)
Calorimeter
A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters and accelerated rate calorimeters are among the most common types. A simple calorimeter just consists of a thermometer attached to a metal container full of water suspended above a combustion chamber. It is one of the measurement devices used in the study of thermodynamics, chemistry, and biochemistry.
Hess's law
Hess's law of constant heat summation, also known simply as Hess' law, is a relationship in physical chemistry named after Germain Hess, a Swiss-born Russian chemist and physician who published it in 1840. The law states that the total enthalpy change during the complete course of a chemical reaction is independent of the sequence of steps taken. Hess's law is now understood as an expression of the fact that the enthalpy of a chemical process is independent of the path taken from the initial to the final state (i.
Thermochemistry
Thermochemistry is the study of the heat energy which is associated with chemical reactions and/or phase changes such as melting and boiling. A reaction may release or absorb energy, and a phase change may do the same. Thermochemistry focuses on the energy exchange between a system and its surroundings in the form of heat. Thermochemistry is useful in predicting reactant and product quantities throughout the course of a given reaction.
Show more
Related courses (14)
ChE-409: Chemical engineering lab & project
Familiarization with practical aspects encountered in chemical reaction engineering. A research project is carried out along twelve weeks where a close interaction is required between the different g
ENG-431: Safety of chemical processes
The focus of the lecture is on reactive hazards (thermal process safety), but explosion protection and reliability of risk reducing measures (concept of SIL) are considered. While being based on theo
ChE-403: Heterogenous reaction engineering
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow for the use of
Show more
Related lectures (89)
Thermodynamics: Demonstrations
Explores endothermic and exothermic reactions with demonstrations using thermite.
Thermodynamics: Enthalpy, Entropy, and Spontaneity
Covers the basics of thermodynamics, including enthalpy, entropy, and spontaneity.
Chemistry and Electrochemistry
Covers chemistry and electrochemistry topics such as chemical potentials, reaction rates, Gibbs free energy, and electrochemical cells.
Show more