A volume boot record (VBR) (also known as a volume boot sector, a partition boot record or a partition boot sector) is a type of boot sector introduced by the IBM Personal Computer. It may be found on a partitioned data storage device, such as a hard disk, or an unpartitioned device, such as a floppy disk, and contains machine code for bootstrapping programs (usually, but not necessarily, operating systems) stored in other parts of the device. On non-partitioned storage devices, it is the first sector of the device. On partitioned devices, it is the first sector of an individual partition on the device, with the first sector of the entire device being a Master Boot Record (MBR) containing the partition table.
The code in volume boot records is invoked either directly by the machine's firmware or indirectly by code in the master boot record or a boot manager. Code in the MBR and VBR is in essence loaded the same way.
Invoking a VBR via a boot manager is known as chain loading. Some dual-boot systems, such as NTLDR (the boot loader for all releases of Microsoft's Windows NT-derived operating systems up to and including Windows XP and Windows Server 2003), take copies of the bootstrap code that individual operating systems install into a single partition's VBR and store them in disc files, loading the relevant VBR content from file after the boot loader has asked the user which operating system to bootstrap.
In Windows Vista, Windows Server 2008 and newer versions, NTLDR was replaced; the boot-loader functionality is instead provided by two new components: WINLOAD.EXE and the Windows Boot Manager.
In s such as FAT12 (except for in DOS 1.x), FAT16, FAT32, and NTFS, the VBR also contains a BIOS Parameter Block (BPB) that specifies the location and layout of the principal on-disk data structures for the file system. (A detailed discussion of the sector layout of FAT VBRs, the various FAT BPB versions and their entries can be found in the FAT article.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A master boot record (MBR) is a special type of boot sector at the very beginning of partitioned computer mass storage devices like fixed disks or removable drives intended for use with IBM PC-compatible systems and beyond. The concept of MBRs was publicly introduced in 1983 with PC DOS 2.0. The MBR holds the information on how the disc's sectors (aka “blocks”) are divided into partitions, each partition notionally containing a file system.
An extended boot record (EBR), or extended partition boot record (EPBR), is a descriptor for a logical partition under the common DOS disk drive partitioning system. In that system, when one (and only one) partition record entry in the master boot record (MBR) is designated an extended partition, then that partition can be subdivided into a number of logical partitions. The actual structure of that extended partition is described by one or more EBRs, which are located inside the extended partition.
NTLDR (abbreviation of NT loader) is the boot loader for all releases of Windows NT operating system from 1993 with the release of Windows NT 3.1 up until Windows XP and Windows Server 2003. From Windows Vista onwards it was replaced by the BOOTMGR bootloader. NTLDR is typically run from the primary storage device, but it can also run from portable storage devices such as a CD-ROM, USB flash drive, or floppy disk. NTLDR can also load a non NT-based operating system given the appropriate boot sector in a file.
The numerical simulation of multiple scenarios easily becomes computationally prohibitive for cardiac electrophysiology (EP) problems if relying on usual high-fidelity, full order models (FOMs). Likewise, the use of traditional reduced order models (ROMs) ...
Today, more than 30 products using a manufacturing process based on mammalian cell culture have been approved for human therapy. Most of these products are currently supplied with stirred tank bioreactors operated in batch or fed-batch mode. However, the b ...
Despite recent advances achieved by application of high-performance computing methods and novel algorithmic techniques to maximum likelihood (ML)-based inference programs, the major computational bottleneck still consists in the computation of bootstrap su ...