Increasing methane emissions are a major contributor to the rising concentration of greenhouse gases in Earth's atmosphere, and are responsible for up to one-third of near-term global heating. During 2019, about 60% (360 million tons) of methane released globally was from human activities, while natural sources contributed about 40% (230 million tons). Reducing methane emissions by capturing and utilizing the gas can produce simultaneous environmental and economic benefits. Since the Industrial Revolution, concentrations of methane in the atmosphere have more than doubled, and about 20 percent of the warming the planet has experienced can be attributed to the gas. About one-third (33%) of anthropogenic emissions are from gas release during the extraction and delivery of fossil fuels; mostly due to gas venting and gas leaks from both active fossil fuel infrastructure and orphan wells. Russia is the world's top methane emitter from oil and gas. Animal agriculture is a similarly large source (30%); primarily because of enteric fermentation by ruminant livestock such as cattle and sheep. According to the Global Methane Assessment published in 2021, methane emissions from livestock (including cattle) are the largest sources of agricultural emissions worldwide A single cow can make up to 99 kg of methane gas per year. Ruminant livestock can produce 250 to 500 L of methane per day. Human consumer waste flows, especially those passing through landfills and wastewater treatment, have grown to become a third major category (18%). Plant agriculture, including both food and biomass production, constitutes a fourth group (15%), with rice production being the largest single contributor. The world's wetlands contribute about three-quarters (75%) of the enduring natural sources of methane. Seepages from near-surface hydrocarbon and clathrate hydrate deposits, volcanic releases, wildfires, and termite emissions account for much of the remainder. Contributions from the surviving wild populations of ruminant mammals are vastly overwhelmed by those of cattle, humans, and other livestock animals.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (28)
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
ENV-202: Microbiology for engineers
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
HUM-121(b): Global issues: climate B
Le cours présente les enjeux mondiaux liés au climat: système climatique et prévisions ; impacts sur écosystèmes et biodiversité ; cadrage historique et débat public ; objectifs et politiques climatiq
Show more
Related lectures (198)
Market-Based Instruments: Emission Reduction Strategies
Covers market-based instruments for emission reductions and their efficiency in minimizing costs across different sources of emissions.
Decoupling Economic Growth from Carbon Emissions
Addresses the need for significant CO2 intensity reduction to achieve climate targets while examining the interplay between economic growth and carbon emissions.
Marginal Abatement Costs: Pricing Emissions and Incentives
Covers marginal abatement costs, pricing emissions, and the role of taxes and subsidies in emission reduction strategies.
Show more
Related publications (511)

Impact of anthropogenic emission control in reducing future PM2.5 concentrations and the related oxidative potential across different regions of China

Athanasios Nenes, Yuan Yuan

Affected by both future anthropogenic emissions and climate change, future prediction of PM2.5 and its Oxidative Potential (OP) distribution is a significant challenge, especially in developing countries like China. To overcome this challenge, we estimated ...
Elsevier2024

Spatio-temporal patterns and drivers of CH4 and CO2 fluxes from rivers and lakes in highly urbanized areas

Alexandre Buttler

Gaseous carbon exchange at the water-air interface of rivers and lakes is an essential process for regional and global carbon cycle assessments. Many studies have shown that rivers surrounding urban landscapes can be hotspots for greenhouse gas (GHG) emiss ...
Amsterdam2024

Separation of CO2 and TFE by using diethanolamine and diisopropylamine

Muhammad Salman, Elia Mercedes Ruiz Pachon

The near-azeotrope mixture of TFE and CO2 is an important concern urging the scientific community to develop new ways for TFE/CO2 separations. In this work, for the first time, Diisopropylamine (DIPA) and Diethanolamine (DEA) are used as solvents for separ ...
Philadelphia2024
Show more
Related concepts (18)
Landfill gas
Landfill gas is a mix of different gases created by the action of microorganisms within a landfill as they decompose organic waste, including for example, food waste and paper waste. Landfill gas is approximately forty to sixty percent methane, with the remainder being mostly carbon dioxide. Trace amounts of other volatile organic compounds (VOCs) comprise the remainder (
Waste
Waste (or wastes) are unwanted or unusable materials. Waste is any substance discarded after primary use, or is worthless, defective and of no use. A by-product, by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero. Examples include municipal solid waste (household trash/refuse), hazardous waste, wastewater (such as sewage, which contains bodily wastes (feces and urine) and surface runoff), radioactive waste, and others.
Greenhouse gas
Greenhouse gases are those gases in the atmosphere that raise the surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by water vapor (), carbon dioxide (), methane (), nitrous oxide (), and ozone (). Without greenhouse gases, the average temperature of Earth's surface would be about , rather than the present average of .
Show more
Related MOOCs (2)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Global Arctic
The Global Arctic MOOC introduces you the dynamics between global changes and changes in the Arctic. This course aims to highlight the effects of climate change in the Polar region. In turn, it will u

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.