Correlation (projective geometry)In projective geometry, a correlation is a transformation of a d-dimensional projective space that maps subspaces of dimension k to subspaces of dimension d − k − 1, reversing inclusion and preserving incidence. Correlations are also called reciprocities or reciprocal transformations. In the real projective plane, points and lines are dual to each other. As expressed by Coxeter, A correlation is a point-to-line and a line-to-point transformation that preserves the relation of incidence in accordance with the principle of duality.
CollineationIn projective geometry, a collineation is a one-to-one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the of collinear points are themselves collinear. A collineation is thus an isomorphism between projective spaces, or an automorphism from a projective space to itself. Some authors restrict the definition of collineation to the case where it is an automorphism. The set of all collineations of a space to itself form a group, called the collineation group.
Line coordinatesIn geometry, line coordinates are used to specify the position of a line just as point coordinates (or simply coordinates) are used to specify the position of a point. There are several possible ways to specify the position of a line in the plane. A simple way is by the pair (m, b) where the equation of the line is y = mx + b. Here m is the slope and b is the y-intercept. This system specifies coordinates for all lines that are not vertical. However, it is more common and simpler algebraically to use coordinates (l, m) where the equation of the line is lx + my + 1 = 0.
Desargues configurationIn geometry, the Desargues configuration is a configuration of ten points and ten lines, with three points per line and three lines per point. It is named after Girard Desargues. The Desargues configuration can be constructed in two dimensions from the points and lines occurring in Desargues's theorem, in three dimensions from five planes in general position, or in four dimensions from the 5-cell, the four-dimensional regular simplex. It has a large group of symmetries, taking any point to any other point and any line to any other line.
Five points determine a conicIn Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve). There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines. Formally, given any five points in the plane in general linear position, meaning no three collinear, there is a unique conic passing through them, which will be non-degenerate; this is true over both the Euclidean plane and any pappian projective plane.