Summary
In particle physics, bremsstrahlung ˈbrɛmʃtrɑːləŋ (ˈbʁɛms.ʃtʁaːlʊŋ; ) is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation (i.e., photons), thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases. Broadly speaking, bremsstrahlung or braking radiation is any radiation produced due to the acceleration (positive or negative) of a charged particle, which includes synchrotron radiation (i.e., photon emission by a relativistic particle), cyclotron radiation (i.e. photon emission by a non-relativistic particle), and the emission of electrons and positrons during beta decay. However, the term is frequently used in the more narrow sense of radiation from electrons (from whatever source) slowing in matter. Bremsstrahlung emitted from plasma is sometimes referred to as free–free radiation. This refers to the fact that the radiation in this case is created by electrons that are free (i.e., not in an atomic or molecular bound state) before, and remain free after, the emission of a photon. In the same parlance, bound–bound radiation refers to discrete spectral lines (an electron "jumps" between two bound states), while free–bound radiation refers to the radiative combination process, in which a free electron recombines with an ion. Larmor formula If quantum effects are negligible, an accelerating charged particle radiates power as described by the Larmor formula and its relativistic generalization. The total radiated power is where (the velocity of the particle divided by the speed of light), is the Lorentz factor, is the vacuum permittivity, signifies a time derivative of , and q is the charge of the particle.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.